25,828 research outputs found

    Chiral discrimination in optical binding

    Get PDF
    The laser-induced intermolecular force that exists between two or more particles in the presence of an electromagnetic field is commonly termed “optical binding.” Distinct from the single-particle forces that are at play in optical trapping at the molecular level, the phenomenon of optical binding is a manifestation of the coupling between optically induced dipole moments in neutral particles. In other, more widely known areas of optics, there are many examples of chiral discrimination—signifying the different response a chiral material has to the handedness of an optical input. In the present analysis, extending previous work on chiral discrimination in optical binding, a mechanism is identified using a quantum electrodynamical approach. It is shown that the optical binding force between a pair of chiral molecules can be significantly discriminatory in nature, depending upon both the handedness of the interacting particles and the polarization of the incident light, and it is typically several orders of magnitude larger than previously reported

    Hyper-Rayleigh scattering in centrosymmetric systems

    Get PDF
    Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E13, does not account for all experimental observations. The relevant results emerge upon extending the theory to include E12M1 and E12E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E12E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties

    Real Space Approach to CMB deboosting

    Get PDF
    The effect of our Galaxy's motion through the Cosmic Microwave Background rest frame, which aberrates and Doppler shifts incoming photons measured by current CMB experiments, has been shown to produce mode-mixing in the multipole space temperature coefficients. However, multipole space determinations are subject to many difficulties, and a real-space analysis can provide a straightforward alternative. In this work we describe a numerical method for removing Lorentz- boost effects from real-space temperature maps. We show that to deboost a map so that one can accurately extract the temperature power spectrum requires calculating the boost kernel at a finer pixelization than one might naively expect. In idealized cases that allow for easy comparison to analytic results, we have confirmed that there is indeed mode mixing among the spherical harmonic coefficients of the temperature. We find that using a boost kernel calculated at Nside=8192 leads to a 1% bias in the binned boosted power spectrum at l~2000, while individual Cls exhibit ~5% fluctuations around the binned average. However, this bias is dominated by pixelization effects and not the aberration and Doppler shift of CMB photons that causes the fluctuations. Performing analysis on maps with galactic cuts does not induce any additional error in the boosted, binned power spectra over the full sky analysis. For multipoles that are free of resolution effects, there is no detectable deviation between the binned boosted and unboosted spectra. This result arises because the power spectrum is a slowly varying function of and does not show that, in general, Lorentz boosts can be neglected for other cosmological quantities such as polarization maps or higher-point functions.Comment: 8 pages, submitted to MNRA

    Highly Efficient Modeling of Dynamic Coronal Loops

    Full text link
    Observational and theoretical evidence suggests that coronal heating is impulsive and occurs on very small cross-field spatial scales. A single coronal loop could contain a hundred or more individual strands that are heated quasi-independently by nanoflares. It is therefore an enormous undertaking to model an entire active region or the global corona. Three-dimensional MHD codes have inadequate spatial resolution, and 1D hydro codes are too slow to simulate the many thousands of elemental strands that must be treated in a reasonable representation. Fortunately, thermal conduction and flows tend to smooth out plasma gradients along the magnetic field, so "0D models" are an acceptable alternative. We have developed a highly efficient model called Enthalpy-Based Thermal Evolution of Loops (EBTEL) that accurately describes the evolution of the average temperature, pressure, and density along a coronal strand. It improves significantly upon earlier models of this type--in accuracy, flexibility, and capability. It treats both slowly varying and highly impulsive coronal heating; it provides the differential emission measure distribution, DEM(T), at the transition region footpoints; and there are options for heat flux saturation and nonthermal electron beam heating. EBTEL gives excellent agreement with far more sophisticated 1D hydro simulations despite using four orders of magnitude less computing time. It promises to be a powerful new tool for solar and stellar studies.Comment: 34 pages, 8 figures, accepted by Astrophysical Journal (minor revisions of original submitted version

    Method Effects and the Need for Cognition Scale

    Get PDF
    Individual differences in the need for cognition are typically assessed using the 18-item Need for cognition scale (NCS) developed by Cacioppo and Petty (1982). However, in contrast to the unidimensional model proposed by the scale developers, recent factor analyses have introduced two -and three- dimensional models of the scale. Confirmatory factor analyses were used in this study to evaluate different measurement models based on data provided by 590 (236 males, 354 females) young adult members of the general public. Although some alternative models showed promise, a single factor model with method effects associated with positively and negatively worded items provided best fit. Implications for the asses sment of need for cognition are considered

    Dipole-dipole interaction between orthogonal dipole moments in time-dependent geometries

    Full text link
    In two nearby atoms, the dipole-dipole interaction can couple transitions with orthogonal dipole moments. This orthogonal coupling accounts for a number of interesting effects, but strongly depends on the geometry of the setup. Here, we discuss several setups of interest where the geometry is not fixed, such as particles in a trap or gases, by averaging over different sets of geometries. Two averaging methods are compared. In the first method, it is assumed that the internal electronic evolution is much faster than the change of geometry, whereas in the second, it is vice versa. We find that the orthogonal coupling typically survives even extensive averaging over different geometries, albeit with qualitatively different results for the two averaging methods. Typically, one- and two-dimensional averaging ranges modelling, e.g., low-dimensional gases, turn out to be the most promising model systems.Comment: 11 pages, 14 figure

    Cascading and Local-Field Effects in Non-Linear Optics Revisited; A Quantum-Field Picture Based on Exchange of Photons

    Get PDF
    The semi-classical theory of radiation-matter coupling misses local-field effects that may alter the pulse time-ordering and cascading that leads to the generation of new signals. These are then introduced macroscopically by solving Maxwell's equations. This procedure is convenient and intuitive but ad hoc. We show that both effects emerge naturally by including coupling to quantum modes of the radiation field in the vacuum state to second order. This approach is systematic and suggests a more general class of corrections that only arise in a QED framework. In the semi-classical theory, which only includes classical field modes, the susceptibility of a collection of NN non-interacting molecules is additive and scales as NN. Second-order coupling to a vacuum mode generates an effective retarded interaction that leads to cascading and local field effects both of which scale as N2N^2
    • 

    corecore