25,828 research outputs found
Chiral discrimination in optical binding
The laser-induced intermolecular force that exists between two or more particles in the presence of an electromagnetic field is commonly termed âoptical binding.â Distinct from the single-particle forces that are at play in optical trapping at the molecular level, the phenomenon of optical binding is a manifestation of the coupling between optically induced dipole moments in neutral particles. In other, more widely known areas of optics, there are many examples of chiral discriminationâsignifying the different response a chiral material has to the handedness of an optical input. In the present analysis, extending previous work on chiral discrimination in optical binding, a mechanism is identified using a quantum electrodynamical approach. It is shown that the optical binding force between a pair of chiral molecules can be significantly discriminatory in nature, depending upon both the handedness of the interacting particles and the polarization of the incident light, and it is typically several orders of magnitude larger than previously reported
Hyper-Rayleigh scattering in centrosymmetric systems
Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E13, does not account for all experimental observations. The relevant results emerge upon extending the theory to include E12M1 and E12E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E12E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties
Real Space Approach to CMB deboosting
The effect of our Galaxy's motion through the Cosmic Microwave Background
rest frame, which aberrates and Doppler shifts incoming photons measured by
current CMB experiments, has been shown to produce mode-mixing in the multipole
space temperature coefficients. However, multipole space determinations are
subject to many difficulties, and a real-space analysis can provide a
straightforward alternative. In this work we describe a numerical method for
removing Lorentz- boost effects from real-space temperature maps. We show that
to deboost a map so that one can accurately extract the temperature power
spectrum requires calculating the boost kernel at a finer pixelization than one
might naively expect. In idealized cases that allow for easy comparison to
analytic results, we have confirmed that there is indeed mode mixing among the
spherical harmonic coefficients of the temperature. We find that using a boost
kernel calculated at Nside=8192 leads to a 1% bias in the binned boosted power
spectrum at l~2000, while individual Cls exhibit ~5% fluctuations around the
binned average. However, this bias is dominated by pixelization effects and not
the aberration and Doppler shift of CMB photons that causes the fluctuations.
Performing analysis on maps with galactic cuts does not induce any additional
error in the boosted, binned power spectra over the full sky analysis. For
multipoles that are free of resolution effects, there is no detectable
deviation between the binned boosted and unboosted spectra. This result arises
because the power spectrum is a slowly varying function of and does not show
that, in general, Lorentz boosts can be neglected for other cosmological
quantities such as polarization maps or higher-point functions.Comment: 8 pages, submitted to MNRA
Highly Efficient Modeling of Dynamic Coronal Loops
Observational and theoretical evidence suggests that coronal heating is
impulsive and occurs on very small cross-field spatial scales. A single coronal
loop could contain a hundred or more individual strands that are heated
quasi-independently by nanoflares. It is therefore an enormous undertaking to
model an entire active region or the global corona. Three-dimensional MHD codes
have inadequate spatial resolution, and 1D hydro codes are too slow to simulate
the many thousands of elemental strands that must be treated in a reasonable
representation. Fortunately, thermal conduction and flows tend to smooth out
plasma gradients along the magnetic field, so "0D models" are an acceptable
alternative. We have developed a highly efficient model called Enthalpy-Based
Thermal Evolution of Loops (EBTEL) that accurately describes the evolution of
the average temperature, pressure, and density along a coronal strand. It
improves significantly upon earlier models of this type--in accuracy,
flexibility, and capability. It treats both slowly varying and highly impulsive
coronal heating; it provides the differential emission measure distribution,
DEM(T), at the transition region footpoints; and there are options for heat
flux saturation and nonthermal electron beam heating. EBTEL gives excellent
agreement with far more sophisticated 1D hydro simulations despite using four
orders of magnitude less computing time. It promises to be a powerful new tool
for solar and stellar studies.Comment: 34 pages, 8 figures, accepted by Astrophysical Journal (minor
revisions of original submitted version
Method Effects and the Need for Cognition Scale
Individual differences in the need for cognition are typically assessed using the 18-item Need for cognition
scale (NCS) developed by Cacioppo and Petty (1982). However, in contrast to the unidimensional model proposed by the scale developers, recent factor analyses have introduced two -and three- dimensional models of the scale. Confirmatory factor analyses were used in this study to evaluate different measurement models based on data provided by 590 (236 males, 354 females) young adult members of the general public. Although some alternative models showed promise, a single factor model with
method effects associated with positively and negatively worded items provided best fit. Implications for the asses
sment of need for cognition are considered
Dipole-dipole interaction between orthogonal dipole moments in time-dependent geometries
In two nearby atoms, the dipole-dipole interaction can couple transitions
with orthogonal dipole moments. This orthogonal coupling accounts for a number
of interesting effects, but strongly depends on the geometry of the setup.
Here, we discuss several setups of interest where the geometry is not fixed,
such as particles in a trap or gases, by averaging over different sets of
geometries. Two averaging methods are compared. In the first method, it is
assumed that the internal electronic evolution is much faster than the change
of geometry, whereas in the second, it is vice versa. We find that the
orthogonal coupling typically survives even extensive averaging over different
geometries, albeit with qualitatively different results for the two averaging
methods. Typically, one- and two-dimensional averaging ranges modelling, e.g.,
low-dimensional gases, turn out to be the most promising model systems.Comment: 11 pages, 14 figure
Cascading and Local-Field Effects in Non-Linear Optics Revisited; A Quantum-Field Picture Based on Exchange of Photons
The semi-classical theory of radiation-matter coupling misses local-field
effects that may alter the pulse time-ordering and cascading that leads to the
generation of new signals. These are then introduced macroscopically by solving
Maxwell's equations. This procedure is convenient and intuitive but ad hoc. We
show that both effects emerge naturally by including coupling to quantum modes
of the radiation field in the vacuum state to second order. This approach is
systematic and suggests a more general class of corrections that only arise in
a QED framework. In the semi-classical theory, which only includes classical
field modes, the susceptibility of a collection of non-interacting
molecules is additive and scales as . Second-order coupling to a vacuum mode
generates an effective retarded interaction that leads to cascading and local
field effects both of which scale as
- âŠ