33 research outputs found

    Combining MODIS LAI with ICESat-Based Canopy Heights Improves Spaceborne Estimates of Vegetation Roughness Length for Momentum

    Get PDF
    Most land-surface models require parameterization of vertical wind profiles within the atmospheric boundary layer. For vegetated surfaces, it is common to assume a logarithmic profile in the surface layer, which includes estimates of vegetation roughness length for momentum (z0) and zero-plane displacement height (d0). This study finds that remotely-sensed forest canopy heights improve estimates of aerodynamic roughness length for momentum using a previously-developed representation of the roughness sublayer (Raupach 1992; Jasinski et al. 2005). Resulting roughness products consist of two datasets: 1) 14 years of 8-day snapshots of the global land surface at a nominal spatial resolution of 500-meters for users who wish to retain full temporal resolution and interannual variability; and 2) multiyear averages of the 8-day snapshots, here referred to as "climatologies" of roughness, which retain underlying seasonality. Both products are suitable for use in data assimilation and reanalyses such as the National Climate Assessment Land Data Assimilation System (NCA-LDAS), for which these products were initially developed

    Use of isotope dilution method to predict bioavailability of organic pollutants in historically contaminated sediments.

    Get PDF
    Many cases of severe environmental contamination arise from historical episodes, where recalcitrant contaminants have resided in the environment for a prolonged time, leading to potentially decreased bioavailability. Use of bioavailable concentrations over bulk chemical levels improves risk assessment and may play a critical role in determining the need for remediation or assessing the effectiveness of risk mitigation operations. In this study, we applied the principle of isotope dilution to quantify bioaccessibility of legacy contaminants DDT and PCBs in marine sediments from a Superfund site. After addition of 13C or deuterated analogues to a sediment sample, the isotope dilution reached a steady state within 24 h of mixing. At the steady state, the accessible fraction (E) derived by the isotope dilution method (IDM) ranged from 0.28 to 0.89 and was substantially smaller than 1 for most compounds, indicating reduced availability of the extensively aged residues. A strong linear relationship (R2=0.86) was found between E and the sum of rapid (Fr) and slow (Fs) desorption fractions determined by sequential Tenax desorption. The IDM-derived accessible concentration (Ce) was further shown to correlate closely with tissue residue in the marine benthic polychaete Neanthes arenaceodentata exposed in the same sediments. As shown in this study, the IDM approach involves only a few simple steps and may be readily adopted in laboratories equipped with mass spectrometers. This novel method is expected to be especially useful for historically contaminated sediments or soils, for which contaminant bioavailability may have changed significantly due to aging and other sequestration processes

    Variation in limb loading magnitude and timing in tetrapods

    Get PDF
    Comparative analyses of locomotion in tetrapods reveal two patterns of stride cycle variability. Tachymetabolic tetrapods (birds and mammals) have lower inter-cycle variation in stride duration than bradymetabolic tetrapods (amphibians, lizards, turtles, and crocodilians). This pattern has been linked to the fact that birds and mammals share enlarged cerebella, relatively enlarged and heavily myelinated Ia afferents, and γ-motoneurons to their muscle spindles. Tachymetabolic tetrapod lineages also both possess an encapsulated Golgi tendon morphology, thought to provide more spatially precise information on muscle tension. The functional consequence of this derived Golgi tendon morphology has never been tested. We hypothesized that one advantage of precise information on muscle tension would be lower and more predictable limb bone stresses, achieved in tachymetabolic tetrapods by having less variable substrate reaction forces than bradymetabolic tetrapods. To test this hypothesis, we analyzed hindlimb substrate reaction forces during locomotion of 55 tetrapod species in a phylogenetic comparative framework. Variation in species-means of limb loading magnitude and timing confirm that, for most of the variables analyzed, variance in hindlimb loading and timing is significantly lower in species with encapsulated versus unencapsulated Golgi tendon organs. These findings suggest that maintaining predictable limb loading provides a selective advantage for birds and mammals by allowing for energy-savings during locomotion, lower limb bone safety factors, and quicker recovery from perturbations. The importance of variation in other biomechanical variables in explaining these patterns, such as posture, effective mechanical advantage, and center-of-mass mechanics, remains to be clarified

    Time Series Vegetation Aerodynamic Roughness Fields Estimated from MODIS Observations

    Full text link
    Most land surface models used today require estimates of aerodynamic roughness length in order to characterize momentum transfer between the surface and atmosphere. The most common method of prescribing roughness is through the use of empirical look-up tables based solely on land cover class. Theoretical approaches that employ satellite-based estimates of canopy density present an attractive alternative to current look-up table approaches based on vegetation cover type that do not account for within-class variability and are oftentimes simplistic with respect to temporal variability. The current research applies Raupach s formulation of momentum aerodynamic roughness to MODIS data on a regional scale in order to estimate seasonally variable roughness and zero-plane displacement height fields using bulk land cover parameters estimated by [Jasinski, M.F., Borak, J., Crago, R., 2005. Bulk surface momentum parameters for satellite-derived vegetation fields. Agric. For. Meteorol. 133, 55-68]. Results indicate promising advances over look-up approaches with respect to characterization of vegetation roughness variability in land surface and atmospheric circulation models

    Plant-Derived Products Selectively Suppress Growth of the Harmful Alga <i>Prymnesium parvum</i>

    Full text link
    Prymnesium parvum is a harmful alga found in brackish waters worldwide whose toxins can be lethal to aquatic organisms. Established field methods to control blooms of this species, however, are unavailable. Earlier studies showed that various extracts of giant reed (Arundo donax) can suppress P. parvum growth and that ellipticine, an allelochemical present in giant reed, is a potent algicide against this species. The unintended effects of giant reed products on nontarget organisms, however, are not fully understood. This study determined the effects of giant reed leachate (aqueous extract of dried chips) and ellipticine on growth of P. parvum and the green microalga Chlorella sorokiniana; survival and reproduction of the planktonic crustacean Daphnia pulex; and hatching success, larval survival, and larval swimming behavior of the teleost fish Danio rerio. Leachate made with 3 g chips L−1 was lethally toxic to P. parvum and D. pulex, stimulated C. sorokiniana growth, and impaired D. rerio behavior. Leachate at 1 g L−1 fully suppressed P. parvum growth, had moderate effects on D. pulex reproductive output, and had no effects on D. rerio. Ellipticine at 0.01 mg L−1 irreversibly inhibited P. parvum growth, acutely but reversibly inhibited C. sorokiniana growth, slightly delayed D. pulex reproduction, and had no effects on D. rerio. These observations suggest that when applied at appropriate concentrations, natural products derived from giant reed can be used as tools to specifically control P. parvum growth with minimal effects on nontarget species

    Trophic transfer and effects of DDT in male hornyhead turbot (Pleuronichthys verticalis) from Palos Verdes Superfund site, CA (USA) and comparisons to field monitoring

    Full text link
    High concentrations of DDT and metabolites (ΣDDT) have been detected in sediment and the demersal flatfish hornyhead turbot (Pleuronichtys verticalis) collected from Palos Verdes (PV), California, USA, a site contaminated with over 100 metric tons of DDT throughout 1960s-70s. This study was conducted to assess the transfer of ΣDDT from PV-sediment into polychaetes (Neanthes arenaceodentata) and hornyhead turbot, and to investigate if the responses in turbots from two different laboratory exposures mimic those in turbots caught in PV (PV-turbot). Turbot fed PV-sediment-contaminated polychaete for 7 days had liver concentrations of ΣDDT similar to PV-turbot. After 28 days, ΣDDT also accumulated in livers of turbot gavaged with a ΣDDT mixture. In&nbsp;vitro cell bioassays indicated significant increases of 17β-estradiol equivalents (EEQ) in turbot bile extracts as compared to the control in the 7-day study. These responses corresponded to those measured in PV-fish. Glucocorticoid receptor (GR), anti-androgen receptor (anti-AR), estrogen receptor (ER) or aryl hydrocarbon receptor (AhR) activities were also observed in extracts of PV-sediment, and PV-sediment-exposed worm. Anti-AR, AhR and GR activities were significantly higher in PV-sediment than reference sediment (San Diego, SD). Higher transcripts of hepatic VTG, ERα and ERβ were found in PV-turbot than SD-turbot, but were unaltered in fish exposed to sediment-contaminated worms for the 7-day study. In contrast, liver extracts from the 28-day treatment of ΣDDT showed lower EEQ but similar hepatic VTG and ERβ transcripts relative to those of PV-turbot. These data indicated that trophic transfer of sediment-associated DDT in 7-day exposures corresponded to field measurements of DDT residues and in&nbsp;vitro ER bioactivities, but failed to mimic in&nbsp;vivo biological effects observed in field fish. In contrast, treatment with ΣDDT alone for 28 days mimicked in&nbsp;vivo biological effects of DDTs in PV fish, but did not correspond to liver concentrations or in&nbsp;vitro bioactivities
    corecore