2 research outputs found

    Increasing maternal age associates with lower placental CPT1B mRNA expression and acylcarnitines, particularly in overweight women

    Get PDF
    Older pregnant women have increased risks of complications including gestational diabetes and stillbirth. Carnitine palmitoyl transferase (CPT) expression declines with age in several tissues and is linked with poorer metabolic health. Mitochondrial CPTs catalyze acylcarnitine synthesis, which facilitates fatty acid oxidization as fuel. We hypothesized that the placenta, containing maternally-inherited mitochondria, shows an age-related CPT decline that lowers placental acylcarnitine synthesis, increasing vulnerability to pregnancy complications. We assessed CPT1A, CPT1B, CPT1C and CPT2 mRNA expression by qPCR in 77 placentas and quantified 10 medium and long-chain acylcarnitines by LC-MS/MS in a subset of 50 placentas. Older maternal age associated with lower expression of placental CPT1B, but not CPT1A, CPT1C or CPT2. CPT1B expression positively associated with eight acylcarnitines and CPT1C with three acylcarnitines, CPT1A negatively associated with nine acylcarnitines, while CPT2 did not associate with any acylcarnitine. Older maternal age associated with reductions in five acylcarnitines, only in those with BMI≥ 25 kg/m2, and not after adjusting for CPT1B expression. Our findings suggest that CPT1B is the main transferase for placental long-chain acylcarnitine synthesis, and age-related CPT1B decline may underlie decreased placental metabolic flexibility, potentially contributing to pregnancy complications in older women, particularly if they are overweight

    Myo-inositol moderates maternal BMI and glycemia related variations in in-vitro placental C-13-DHA-metabolism, altering their relationships with birthweight

    No full text
    Transplacental docosahexaenoic-acid (DHA) supply for fetal development is regulated by placental DHA-lipid metabolism. Both maternal diabetes and obesity are linked to possible decreased fetal circulating DHA and increased placental DHA-lipids. Since myo-inositol is a promising intervention for gestational diabetes (GDM), we aimed to determine whether myo-inositol could rectify perturbations in placental DHA metabolism associated with maternal increasing glycemia and obesity and examine links with birthweight. Term placental villous explants from 17 women representing a range of BMIs and mid-gestational glycemia, were incubated with 13C-labeled-DHA for 48 h, in 0.3 µmol/L (control) or 60 µmol/L myo-inositol. Individual newly synthesized 13C-DHA-labeled lipid species were quantified by liquid-chromatography-mass-spectrometry. Compared with controls, incubation with myo-inositol decreased most 13C-DHA-lipids in placental explants from women with higher BMI or higher glycemia, but increased 13C-DHA-lipids with normal BMI or lower glycemia. Myo-inositol also increased 13C-DHA-labeled lipids in cases of lower birthweight centile, but induced decreases at higher centiles. Myo-inositol therefore lowered DHA-lipids in placenta with high basal placental DHA-lipid production (higher BMI and glycemia) but increased DHA-lipids where basal processing capacity is low. Myo-inositol thus moderates placental DHA metabolism towards a physiological mean which may in turn moderate birthweight.</p
    corecore