319 research outputs found
Coherent phenomena in mesoscopic systems
A mesoscopic system of cylindrical geometry made of a metal or a
semiconductor is shown to exhibit features of a quantum coherent state. It is
shown that magnetostatic interaction can play an important role in mesoscopic
systems leading to an ordered ground state. The temperature below the
system exhibits long-range order is determined. The self-consistent mean field
approximation of the magnetostatic interaction is performed giving the
effective Hamiltonian from which the self-sustaining currents can be obtained.
The relation of quantum coherent state in mesoscopic cylinders to other
coherent systems like superconductors is discussed.Comment: REVTeX, 4 figures, in print in Supercond. Sci. Techno
Fermi Surface of the Electron-doped Cuprate Superconductor Nd_{2-x}Ce_xCuO_{4} Probed by High-Field Magnetotransport
We report on the study of the Fermi surface of the electron-doped cuprate
superconductor NdCeCuO by measuring the interlayer
magnetoresistance as a function of the strength and orientation of the applied
magnetic field. We performed experiments in both steady and pulsed magnetic
fields on high-quality single crystals with Ce concentrations of to
0.17. In the overdoped regime of we found both semiclassical
angle-dependent magnetoresistance oscillations (AMRO) and Shubnikov-de Haas
(SdH) oscillations. The combined AMRO and SdH data clearly show that the
appearance of fast SdH oscillations in strongly overdoped samples is caused by
magnetic breakdown. This observation provides clear evidence for a
reconstructed multiply-connected Fermi surface up to the very end of the
overdoped regime at . The strength of the superlattice potential
responsible for the reconstructed Fermi surface is found to decrease with
increasing doping level and likely vanishes at the same carrier concentration
as superconductivity, suggesting a close relation between translational
symmetry breaking and superconducting pairing. A detailed analysis of the
high-resolution SdH data allowed us to determine the effective cyclotron mass
and Dingle temperature, as well as to estimate the magnetic breakdown field in
the overdoped regime.Comment: 23 pages, 8 figure
Possibility of long-range order in clean mesoscopic cylinders
A microscopic Hamiltonian of the magnetostatic interaction is discussed. This
long-range interaction can play an important role in mesoscopic systems leading
to an ordered ground state.
The self-consistent mean field approximation of the magnetostatic interaction
is performed to give an effective Hamiltonian from which the spontaneous,
self-sustaining currents can be obtained.
To go beyond the mean field approximation the mean square fluctuation of the
total momentum is calculated and its influence on self-sustaining currents in
mesoscopic cylinders with quasi-1D and quasi-2D conduction is considered. Then,
by the use of the microscopic Hamiltonian of the magnetostatic interaction for
a set of stacked rings, the problem of long-range order is discussed. The
temperature below which the system is in an ordered state is
determined.Comment: 14 pages, REVTeX, 5 figures, in print in Phys. Rev.
Importance of Correlation Effects on Magnetic Anisotropy in Fe and Ni
We calculate magnetic anisotropy energy of Fe and Ni by taking into account
the effects of strong electronic correlations, spin-orbit coupling, and
non-collinearity of intra-atomic magnetization. The LDA+U method is used and
its equivalence to dynamical mean-field theory in the static limit is
emphasized. Both experimental magnitude of MAE and direction of magnetization
are predicted correctly near U=4 eV for Ni and U=3.5 eV for Fe. Correlations
modify one-electron spectra which are now in better agreement with experiments.Comment: 4 pages, 2 figure
Neighbours matter and the weak succumb: Ash dieback infection is more severe in ash trees with fewer conspecific neighbours and lower prior growth rate
The epidemiology and severity of ash dieback (ADB), the disease caused by the ascomycete fungus Hymenoscyphus fraxineus, has been linked to a variety of site conditions; however, there has been a lack of analysis at an individual tree scale.Symptoms of ADB were scored on ca. 400 trees of Fraxinus excelsior (ash) in permanent sample plots during two successive years in a UK natural woodland reserve. Using comprehensive plot records maintained since 1945, and detailed spatial records updated since 1977, we assembled an array of potential explanatory variables, including site environment factors, ash tree density, previous and present tree condition and near neighbourhood summary statistics (NNSS), such as species mingling and size dominance. Their impact on the severity of ADB of focal ash trees was tested with generalised linear mixed effects models (GLMM).The severity of ADB was much greater in the lower slope parts of the site with moister soils and least in a managed area subject to tree thinning in the previous 35 years. Severity of ADB had a negative association with focal ash tree prior relative growth rate over a period of a decade immediately before the disease was detected at the site. Greater ADB severity was also significantly associated with smaller diameter at breast height of ash trees. Additionally, ADB was significantly positively associated with a greater proportion of heterospecific trees amongst the six nearest neighbours of the focal tree.Synthesis. The relationship of the severity of ADB disease with site environment, tree condition and neighbourhood is complex but nevertheless important in the progression of the disease. The findings suggest some silvicultural interventions, such as thinning to increase the vigour of retained ash trees, might reduce the impact of ADB
Post-release reforms for short prison sentences: re-legitimising and widening the net of punishment
Transforming Rehabilitation (TR) promised a ‘revolution’ in the way offenders are managed, providing a renewed focus on short sentence prisoners. The TR reforms extends mandatory post-release supervision and tailored through-the-gate resettlement provisions to a group that has predominately faced a ‘history of neglect’ yet often present with the most acute needs within the criminal justice system. However, existing literature underlines that serving short sentences lack ‘utility’ and can be counter-productive to facilitating effective rehabilitation.
This article explores the purposes of providing post release supervision for short sentences, firstly exploring a previous attempt to reform short sentences; (the now defunct) ‘Custody Plus’ within the 2003 Criminal Justice Act and then the Offender Rehabilitation Act 2014 within the TR reforms. This article contends that both post release reforms have sought to re-affirm and re-legitimise prison as the dominant form of punishment in society- or what Carlen refers to as ‘carceral clawback’. This article will also use Cohen’s analysis on social control to establish that post release supervision will serve to ‘widen the net’ extend the period of punishment and oversight and will only reinforce a form of enforced ‘state obligated rehabilitation’ that will undermine efforts made to resettle short sentence prisoners
Voltammetry and single-molecule in situ scanning tunneling microscopy of laccases and bilirubin oxidase in electrocatalytic dioxygen reduction on Au(111) single-crystal electrodes
Photochemical dihydrogen production using an analogue of the active site of [NiFe] hydrogenase
The photoproduction of dihydrogen (H2) by a low molecular weight analogue of the active site of [NiFe] hydrogenase has been investigated by the reduction of the [NiFe2] cluster, 1, by a photosensitier PS (PS = [ReCl(CO)3(bpy)] or [Ru(bpy)3][PF6]2). Reductive quenching of the 3MLCT excited state of the photosensitiser by NEt3 or N(CH2CH2OH)3 (TEOA) generates PS•−, and subsequent intermolecular electron transfer to 1 produces the reduced anionic form of 1. Time-resolved infrared spectroscopy (TRIR) has been used to probe the intermediates throughout the reduction of 1 and subsequent photocatalytic H2 production from [HTEOA][BF4], which was monitored by gas chromatography. Two structural isomers of the reduced form of 1 (1a•− and 1b•−) were detected by Fourier transform infrared spectroscopy (FTIR) in both CH3CN and DMF (dimethylformamide), while only 1a•− was detected in CH2Cl2. Structures for these intermediates are proposed from the results of density functional theory calculations and FTIR spectroscopy. 1a•− is assigned to a similar structure to 1 with six terminal carbonyl ligands, while calculations suggest that in 1b•− two of the carbonyl groups bridge the Fe centres, consistent with the peak observed at 1714 cm−1 in the FTIR spectrum for 1b•− in CH3CN, assigned to a ν(CO) stretching vibration. The formation of 1a•− and 1b•− and the production of H2 was studied in CH3CN, DMF and CH2Cl2. Although the more catalytically active species (1a•− or 1b•−) could not be determined, photocatalysis was observed only in CH3CN and DMF
Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting.
In natural photosynthesis, light is used for the production of chemical energy carriers to fuel biological activity. The re-engineering of natural photosynthetic pathways can provide inspiration for sustainable fuel production and insights for understanding the process itself. Here, we employ a semiartificial approach to study photobiological water splitting via a pathway unavailable to nature: the direct coupling of the water oxidation enzyme, photosystem II, to the H2 evolving enzyme, hydrogenase. Essential to this approach is the integration of the isolated enzymes into the artificial circuit of a photoelectrochemical cell. We therefore developed a tailor-made hierarchically structured indium-tin oxide electrode that gives rise to the excellent integration of both photosystem II and hydrogenase for performing the anodic and cathodic half-reactions, respectively. When connected together with the aid of an applied bias, the semiartificial cell demonstrated quantitative electron flow from photosystem II to the hydrogenase with the production of H2 and O2 being in the expected two-to-one ratio and a light-to-hydrogen conversion efficiency of 5.4% under low-intensity red-light irradiation. We thereby demonstrate efficient light-driven water splitting using a pathway inaccessible to biology and report on a widely applicable in vitro platform for the controlled coupling of enzymatic redox processes to meaningfully study photocatalytic reactions.This work was supported by the U.K. Engineering and Physical Sciences Research Council (EP/H00338X/2 to E.R. and EP/G037221/1, nanoDTC, to D.M.), the UK Biology and Biotechnological Sciences Research Council (BB/K002627/1 to A.W.R. and BB/K010220/1 to E.R.), a Marie Curie Intra-European Fellowship (PIEF-GA-2013-625034 to C.Y.L), a Marie Curie International Incoming Fellowship (PIIF-GA-2012-328085 RPSII to J.J.Z) and the CEA and the CNRS (to J.C.F.C.). A.W.R. holds a Wolfson Merit Award from the Royal Society.This is the final version of the article. It first appeared from ACS Publications via http://dx.doi.org/10.1021/jacs.5b0373
Catalytic Cycle of Multicopper Oxidases Studied by Combined Quantum- and Molecular-Mechanical Free-Energy Perturbation Methods
We have used combined quantum mechanical and molecular mechanical free-energy perturbation
methods in combination with explicit solvent simulations to study the reaction mechanism of the
multicopper oxidases, in particular the regeneration of the reduced state from the native
intermediate. For 52 putative states of the trinuclear copper cluster, differing in the oxidation states
of the copper ions and the protonation states of water- and O2-derived ligands, we have studied
redox potentials, acidity constants, isomerisation reactions, as well as water- and O2 binding
reactions. Thereby, we can propose a full reaction mechanism of the multicopper oxidases with
atomic detail. We also show that the two copper sites in the protein communicate so that redox
potentials and acidity constants of one site are affected by up to 0.2 V or 3 pKa units by a change
in the oxidation state of the other site
- …
