6 research outputs found

    Characteristics of ambulatory anticoagulant adverse drug events: a descriptive study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the high frequency with which adverse drug events (ADEs) occur in outpatient settings, detailed information regarding these events remains limited. Anticoagulant drugs are associated with increased safety concerns and are commonly involved in outpatient ADEs. We therefore sought to evaluate ambulatory anticoagulation ADEs and the patient population in which they occurred within the Duke University Health System (Durham, NC, USA).</p> <p>Methods</p> <p>A retrospective chart review of ambulatory warfarin-related ADEs was conducted. An automated trigger surveillance system identified eligible events in ambulatory patients admitted with an International Normalized Ratio (INR) >3 and administration of vitamin K. Event and patient characteristics were evaluated, and quality/process improvement strategies for ambulatory anticoagulation management are described.</p> <p>Results</p> <p>A total of 169 events in 167 patients were identified from December 1, 2006-June 30, 2008 and included in the study. A median supratherapeutic INR of 6.1 was noted, and roughly half of all events (52.1%) were associated with a bleed. Nearly 74% of events resulted in a need for fresh frozen plasma; 64.8% of bleeds were classified as major. A total of 59.2% of events were at least partially responsible for hospital admission. Median patient age was 68 y (range 36-95 y) with 24.9% initiating therapy within 3 months prior to the event. Of events with a prior documented patient visit (n = 157), 73.2% were seen at a Duke clinic or hospital within the previous month. Almost 80% of these patients had anticoagulation therapy addressed, but only 60.0% had a follow-up plan documented in the electronic note.</p> <p>Conclusions</p> <p>Ambulatory warfarin-related ADEs have significant patient and healthcare utilization consequences in the form of bleeding events and associated hospital admissions. Recommendations for improvement in anticoagulation management include use of information technology to assist monitoring and follow-up documentation, avoid drug interactions, and engage patients in their care.</p

    Computerized surveillance of opioid-related adverse drug events in perioperative care: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Given the complexity of surgical care, perioperative patients are at high risk of opioid-related adverse drug events. Existing methods of detection, such as trigger tools and manual chart review, are time-intensive which makes sustainability challenging. Using strategic rule design, computerized surveillance may be an efficient, pharmacist-driven model for event detection that leverages existing staff resources.</p> <p>Methods</p> <p>Computerized adverse drug event surveillance uses a logic-based rules engine to identify potential adverse drug events or evolving unsafe clinical conditions. We extended an inpatient rule (administration of naloxone) to detect opioid-related oversedation and respiratory depression to perioperative care at a large academic medical center. Our primary endpoint was the adverse drug event rate. For all patients with a naloxone alert, manual chart review was performed by a perioperative clinical pharmacist to assess patient harm. In patients with confirmed oversedation, other patient safety event databases were queried to determine if they could detect duplicate, prior, or subsequent opioid-related events.</p> <p>Results</p> <p>We identified 419 cases of perioperative naloxone administration. Of these, 101 were given postoperatively and 69 were confirmed as adverse drug events after chart review yielding a rate of 1.89 adverse drug events/1000 surgical encounters across both the inpatient and ambulatory settings. Our ability to detect inpatient opioid adverse drug events increased 22.7% by expanding surveillance into perioperative care. Analysis of historical surveillance data as well as a voluntary reporting database revealed that 11 of our perioperative patients had prior or subsequent harmful oversedation. Nine of these cases received intraoperative naloxone, and 2 had received naloxone in the post-anesthesia care unit. Pharmacist effort was approximately 3 hours per week to evaluate naloxone alerts and confirm adverse drug events.</p> <p>Conclusion</p> <p>A small investment of resources into a pharmacist-driven surveillance model gave great gains in organizational adverse drug event detection. The patients who experienced multiple events are particularly relevant to future studies seeking risk factors for opioid induced respiratory depression. Computerized surveillance is an efficient, impactful, and sustainable model for ongoing capture and analysis of these rare, but potentially serious events.</p

    Implementing and Integrating a Clinically-Driven Electronic Medical Record (EMR) for Radiation Oncology in a Large Medical Enterprise

    Get PDF
    Purpose/Objective: While our department is heavily invested in computer-based treatment planning, we historically relied on paper-based charts for management of Radiation Oncology patients. In early 2009, we initiated the process of conversion to an electronic medical record (EMR) eliminating the need for paper charts. Key goals included the ability to readily access information wherever and whenever needed, without compromising safety, treatment quality, confidentiality or productivity.Methodology: In February, 2009, we formed a multi-disciplinary team of Radiation Oncology physicians, nurses, therapists, administrators, physicists/dosimetrists, and information technology (IT) specialists, along with staff from the Duke Health System IT department. The team identified all existing processes and associated information/reports, established the framework for the EMR system and generated, tested and implemented specific EMR processes.Results: Two broad classes of information were identified: information which must be readily accessed by anyone in the health system versus that used solely within the Radiation Oncology department. Examples of the former are consultation reports, weekly treatment check notes and treatment summaries; the latter includes treatment plans, daily therapy records and quality assurance reports. To manage the former, we utilized the enterprise-wide system , which required an intensive effort to design and implement procedures to export information from Radiation Oncology into that system. To manage &quot;Radiation Oncology&quot; data, we used our existing system (ARIA, Varian Medical Systems.) The ability to access both systems simultaneously from a single workstation (WS) was essential, requiring new WS and modified software. As of January, 2010, all new treatments were managed solely with an EMR. We find that an EMR makes information more widely accessible and does not compromise patient safety, treatment quality or confidentiality. However, compar
    corecore