50 research outputs found

    An integrated theoretical-experimental approach to accelerate translational tissue engineering

    Get PDF
    Implantable devices utilizing bioengineered tissue are increasingly showing promise as viable clinical solutions. The design of bioengineered constructs is currently directed according to the results of experiments which are used to test a wide range of different combinations and spatial arrangements of biomaterials, cells and chemical factors. There is an outstanding need to accelerate the design process and reduce financial costs, whilst minimizing the required number of animal-based experiments. These aims could be achieved through the incorporation of mathematical modelling as a preliminary design tool. Here we focus on tissue-engineered constructs for peripheral nerve repair, which are designed to aid nerve and blood vessel growth and repair after peripheral nerve injury. We offer insight into the role that mathematical modelling can play within tissue engineering and motivate the use of modelling as a tool capable of improving and accelerating the design of nerve repair constructs in particular. Specific case studies are presented in order to illustrate the potential of mathematical modelling to direct construct design

    Expression of Transketolase like gene 1 (TKTL1) predicts disease-free survival in patients with locally advanced rectal cancer receiving neoadjuvant chemoradiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For patients with locally advanced rectal cancer (LARC) neoadjuvant chemoradiotherapy is recommended as standard therapy. So far, no predictive or prognostic molecular factors for patients undergoing multimodal treatment are established. Increased angiogenesis and altered tumour metabolism as adaption to hypoxic conditions in cancers play an important role in tumour progression and metastasis. Enhanced expression of Vascular-endothelial-growth-factor-receptor <it>(VEGF-R</it>) and Transketolase-like-1 (<it>TKTL1</it>) are related to hypoxic conditions in tumours. In search for potential prognostic molecular markers we investigated the expression of <it>VEGFR-1</it>, <it>VEGFR-2 </it>and <it>TKTL1 </it>in patients with LARC treated with neoadjuvant chemoradiotherapy and cetuximab.</p> <p>Methods</p> <p>Tumour and corresponding normal tissue from pre-therapeutic biopsies of 33 patients (m: 23, f: 10; median age: 61 years) with LARC treated in phase-I and II trials with neoadjuvant chemoradiotherapy (cetuximab, irinotecan, capecitabine in combination with radiotherapy) were analysed by quantitative PCR.</p> <p>Results</p> <p>Significantly higher expression of <it>VEGFR-1/2 </it>was found in tumour tissue in pre-treatment biopsies as well as in resected specimen after neoadjuvant chemoradiotherapy compared to corresponding normal tissue. High <it>TKTL1 </it>expression significantly correlated with disease free survival. None of the markers had influence on early response parameters such as tumour regression grading. There was no correlation of gene expression between the investigated markers.</p> <p>Conclusion</p> <p>High <it>TKTL-1 </it>expression correlates with poor prognosis in terms of 3 year disease-free survival in patients with LARC treated with intensified neoadjuvant chemoradiotherapy and may therefore serve as a molecular prognostic marker which should be further evaluated in randomised clinical trials.</p
    corecore