62,208 research outputs found

    Pulsation-Initiated Mass Loss in Luminous Blue Variables: A Parameter Study

    Full text link
    Luminous blue variables (LBVs) are characterized by semi-periodic episodes of enhanced mass-loss, or outburst. The cause of these outbursts has thus far been a mystery. One explanation is that they are initiated by kappa-effect pulsations in the atmosphere caused by an increase in luminosity at temperatures near the so-called ``iron bump'' (T ~ 200,000 K), where the Fe opacity suddenly increases. Due to a lag in the onset of convection, this luminosity can build until it exceeds the Eddington limit locally, seeding pulsations and possibly driving some mass from the star. We present some preliminary results from a parameter study focusing on the conditions necessary to trigger normal S-Dor type (as opposed to extreme eta-Car type) outbursts. We find that as Y increases or Z decreases, the pulsational amplitude decreases and outburst-like behavior, indicated by a large, sudden increase in photospheric velocity, becomes likes likely.Comment: 6 pages, 4 figures, to be published in the Proceedings of Massive Stars as Cosmic Engines, IAU Symp 250, ed. F. Bresolin, P. A. Crowther, & J. Puls (Cambridge Univ. Press

    Anomalous aging phenomena caused by drift velocities

    Full text link
    We demonstrate via several examples that a uniform drift velocity gives rise to anomalous aging, characterized by a specific form for the two-time correlation functions, in a variety of statistical-mechanical systems far from equilibrium. Our first example concerns the oscillatory phase observed recently in a model of competitive learning. Further examples, where the proposed theory is exact, include the voter model and the Ohta-Jasnow-Kawasaki theory for domain growth in any dimension, and a theory for the smoothing of sandpile surfaces.Comment: 7 pages, 3 figures. To appear in Europhysics Letter

    Eyes in the sky: Interactions between AGB winds and the interstellar magnetic field

    Full text link
    We aim to examine the role of the interstellar magnetic field in shaping the extended morphologies of slow dusty winds of Asymptotic Giant-branch (AGB) stars in an effort to pin-point the origin of so-called eye shaped CSE of three carbon-rich AGB stars. In addition, we seek to understand if this pre-planetary nebula (PN) shaping can be responsible for asymmetries observed in PNe. Hydrodynamical simulations are used to study the effect of typical interstellar magnetic fields on the free-expanding spherical stellar winds as they sweep up the local interstellar medium (ISM). The simulations show that typical Galactic interstellar magnetic fields of 5 to 10 muG, are sufficient to alter the spherical expanding shells of AGB stars to appear as the characteristic eye shape revealed by far-infrared observations. The typical sizes of the simulated eyes are in accordance with the observed physical sizes. However, the eye shapes are of transient nature. Depending on the stellar and interstellar conditions they develop after 20,000 to 200,000yrs and last for about 50,000 to 500,000 yrs, assuming that the star is at rest relative to the local interstellar medium. Once formed the eye shape will develop lateral outflows parallel to the magnetic field. The "explosion" of a PN in the center of the eye-shaped dust shell gives rise to an asymmetrical nebula with prominent inward pointing Rayleigh-Taylor instabilities. Interstellar magnetic fields can clearly affect the shaping of wind-ISM interaction shells. The occurrence of the eyes is most strongly influenced by stellar space motion and ISM density. Observability of this transient phase is favoured for lines-of-sight perpendicular to the interstellar magnetic field direction. The simulations indicate that shaping of the pre-PN envelope can strongly affect the shape and size of PNe.Comment: Accepted for publication in A&A. Final version will contain animated result

    Molecular Carbon Chains and Rings in TMC-1

    Get PDF
    We present mapping results in several rotational transitions of HC3N, C6H, both cyclic and linear C3H2 and C3H, towards the cyanopolyyne peak of the filamentary dense cloud TMC-1 using the IRAM 30m and MPIfR 100m telescopes. The spatial distribution of the cumulene carbon chain propadienylidene H2C3 (hereafter l-C3H2) is found to deviate significantly from the distributions of the cyclic isomer c-C3H2, HC3N, and C6H which in turn look very similar. The cyclic over linear abundance ratio of C3H2 increases by a factor of 3 across the filament, with a value of 28 at the cyanopolyyne peak. This abundance ratio is an order of magnitude larger than the range (3 to 5) we observed in the diffuse interstellar medium. The cyclic over linear abundance ratio of C3H also varies by ~2.5 in TMC-1, reaching a maximum value (13) close to the cyanopolyyne peak. These behaviors might be related to competitive processes between ion-neutral and neutral-neutral reactions for cyclic and linear species.Comment: Accepted for publication in The Astrophysical Journal, part I. 24 pages, including 4 tables, 7 figures, and figure caption
    corecore