62,208 research outputs found
Pulsation-Initiated Mass Loss in Luminous Blue Variables: A Parameter Study
Luminous blue variables (LBVs) are characterized by semi-periodic episodes of
enhanced mass-loss, or outburst. The cause of these outbursts has thus far been
a mystery. One explanation is that they are initiated by kappa-effect
pulsations in the atmosphere caused by an increase in luminosity at
temperatures near the so-called ``iron bump'' (T ~ 200,000 K), where the Fe
opacity suddenly increases. Due to a lag in the onset of convection, this
luminosity can build until it exceeds the Eddington limit locally, seeding
pulsations and possibly driving some mass from the star. We present some
preliminary results from a parameter study focusing on the conditions necessary
to trigger normal S-Dor type (as opposed to extreme eta-Car type) outbursts. We
find that as Y increases or Z decreases, the pulsational amplitude decreases
and outburst-like behavior, indicated by a large, sudden increase in
photospheric velocity, becomes likes likely.Comment: 6 pages, 4 figures, to be published in the Proceedings of Massive
Stars as Cosmic Engines, IAU Symp 250, ed. F. Bresolin, P. A. Crowther, & J.
Puls (Cambridge Univ. Press
Anomalous aging phenomena caused by drift velocities
We demonstrate via several examples that a uniform drift velocity gives rise
to anomalous aging, characterized by a specific form for the two-time
correlation functions, in a variety of statistical-mechanical systems far from
equilibrium. Our first example concerns the oscillatory phase observed recently
in a model of competitive learning. Further examples, where the proposed theory
is exact, include the voter model and the Ohta-Jasnow-Kawasaki theory for
domain growth in any dimension, and a theory for the smoothing of sandpile
surfaces.Comment: 7 pages, 3 figures. To appear in Europhysics Letter
Eyes in the sky: Interactions between AGB winds and the interstellar magnetic field
We aim to examine the role of the interstellar magnetic field in shaping the
extended morphologies of slow dusty winds of Asymptotic Giant-branch (AGB)
stars in an effort to pin-point the origin of so-called eye shaped CSE of three
carbon-rich AGB stars. In addition, we seek to understand if this pre-planetary
nebula (PN) shaping can be responsible for asymmetries observed in PNe.
Hydrodynamical simulations are used to study the effect of typical interstellar
magnetic fields on the free-expanding spherical stellar winds as they sweep up
the local interstellar medium (ISM). The simulations show that typical Galactic
interstellar magnetic fields of 5 to 10 muG, are sufficient to alter the
spherical expanding shells of AGB stars to appear as the characteristic eye
shape revealed by far-infrared observations. The typical sizes of the simulated
eyes are in accordance with the observed physical sizes. However, the eye
shapes are of transient nature. Depending on the stellar and interstellar
conditions they develop after 20,000 to 200,000yrs and last for about 50,000 to
500,000 yrs, assuming that the star is at rest relative to the local
interstellar medium. Once formed the eye shape will develop lateral outflows
parallel to the magnetic field. The "explosion" of a PN in the center of the
eye-shaped dust shell gives rise to an asymmetrical nebula with prominent
inward pointing Rayleigh-Taylor instabilities.
Interstellar magnetic fields can clearly affect the shaping of wind-ISM
interaction shells. The occurrence of the eyes is most strongly influenced by
stellar space motion and ISM density. Observability of this transient phase is
favoured for lines-of-sight perpendicular to the interstellar magnetic field
direction. The simulations indicate that shaping of the pre-PN envelope can
strongly affect the shape and size of PNe.Comment: Accepted for publication in A&A. Final version will contain animated
result
PUBLIC ACQUISITION OF RIGHTS TO USE FARM CHEMICALS: POSSIBLE COSTS AND IMPACTS
Crop Production/Industries,
Molecular Carbon Chains and Rings in TMC-1
We present mapping results in several rotational transitions of HC3N, C6H,
both cyclic and linear C3H2 and C3H, towards the cyanopolyyne peak of the
filamentary dense cloud TMC-1 using the IRAM 30m and MPIfR 100m telescopes. The
spatial distribution of the cumulene carbon chain propadienylidene H2C3
(hereafter l-C3H2) is found to deviate significantly from the distributions of
the cyclic isomer c-C3H2, HC3N, and C6H which in turn look very similar. The
cyclic over linear abundance ratio of C3H2 increases by a factor of 3 across
the filament, with a value of 28 at the cyanopolyyne peak. This abundance ratio
is an order of magnitude larger than the range (3 to 5) we observed in the
diffuse interstellar medium. The cyclic over linear abundance ratio of C3H also
varies by ~2.5 in TMC-1, reaching a maximum value (13) close to the
cyanopolyyne peak. These behaviors might be related to competitive processes
between ion-neutral and neutral-neutral reactions for cyclic and linear
species.Comment: Accepted for publication in The Astrophysical Journal, part I. 24
pages, including 4 tables, 7 figures, and figure caption
- …