6 research outputs found

    Fish population dynamics in a temporarily open/closed South African estuary

    Get PDF
    The primary aim of this study was to investigate the population dynamics of the fishes associated with a small (17.5 hectares) temporarily open/closed estuary on the south east coast of South Africa. The results are based on the findings of an intensive sampling programme conducted over a period of four years in the East Kleinemonde estuary (33° 32' S : 27° 03' E). By adopting a quantitative approach, this study addresses the need for information on estuarine-associated fish population sizes, standing stock (biomass) estimates and productivity. The ichthyoplankton assemblage in the surf zone adjacent to the mouth of the estuary was dominated by postflexion larvae representing at least 21 taxa in 14 families. Rhabdosargus holubi of sizes ranging between 9 mm and 21 mm BL was the most abundant species with a mean density of 7.3 individuals per 100 m'. This species, which accounted for 77.6% of the catch composition, was recorded throughout the year but revealed a distinct peak in abundance in spring (August - September). The ichthyofaunal community within the East Kleinemonde estuary was dominated by juvenile marine-spawning species and typical of a warm temperate southern African estuary. A total of 30 species in 17 families was recorded, including the endangered estuarine pipefish Syngnathus watermeyeri. Multivariate analyses (classification and ordination) of the catch assemblages revealed a high degree of similarity (> 70%) throughout the estuary, with two distinct groups being identified on the basis of substratum type. The sampling stations near the mouth with a sandy substratum were distinguished from all other sampling sites in the estuary. The dominant estuarine-spawning species were represented by all life-history stages, suggesting that they bred successfully in the estuary. This group was numerically and gravimetrically dominated by the two zooplanktivorous shoaling species Gilchristella aestuaria and Atherina breviceps with density extrapolated population size estimates of 420 973 and 198 275 individuals, and biomass estimates of 1.6 and 0.6 g m⁻² respectively. The total population size of all estuarine-spawning species with a mean biomass 00.4 g m⁻² was estimated at 754 217 individuals. Population size estimates of the marine-spawning species were calculated using data obtained from three independent mark-recapture experiments. The assumptions for the mark-recapture analyses were adequately met and it was concluded that the techniques provided reliable estimates of population size. However, estimates obtained from density extrapolation revealed enormous variability and were considered to be unreliable. The total population size was estimated at 63 342, 18 592 and 13 5 192 during the three mark-recapture experiments respectively. The numerically dominant species during all three experiments was Rhabdosargus holubi. Biomass production of the marine-spawning species was evaluated over a 123 day census period when population sizes and estimates of growth rates were known. Productivity for all fishes with a standing stock of 26.2 g m⁻² was calculated at 4.5 g m⁻² month01 Rhabdosargus holubi accounted for more than 75% of the total marine fish productivity. This study draws attention to the success of Rhabdosargus holubi in the East Kleinemonde estuary, which is ascribed to aspects of its biology. These include an extended breeding season, the ability to recruit into the estuary under adverse open mouth conditions and its omnivorous food habits. The dominance of this migratory species suggests that it plays an important role in the transfer of energy to the coastal marine environment when the mouth of the East Kleinemonde estuary opens. Predation by birds and a dominant piscivorous fish (Lichia amia) was quantitatively assessed over a period of two years. Monthly food consumption by all piscivorous birds revealed large temporal variability, ranging from 32 to 466 kg month-I An unusual invasion of Cape cormorants during the winter of 1994 accounted for large scale mortality (2246 kg of fish) over a relatively short period. The predatory impact of this episodic event was reflected in the findings of the fish mark-recapture experiments, which revealed a 70% reduction in the total population of marine-spawning fishes (above a certain minimum size) in the estuary subsequent to this invasion. Monthly food consumption by the Lichia amia population in the estuary was calculated at 68 and 58 kg month-I for two distinct time periods when the population size was known. These findings suggest that this species is the top piscivorous predator in the East Kleinemonde estuary. Finally, the findings of this study highlight the temporal variability of fish populations within a single estuary. It is suggested that predation and estuary mouth conditions are the main factors influencing the abundance (and its variability) of individual species in the East Kleinemonde estuary

    Do environmental factors influence the movement of estuarine fish? A case study using acoustic telemetry

    Get PDF
    Telemetry methods were used to investigate the influence of selected environmental variables on the position and movement of an estuarine-dependent haemulid, the spotted grunter Pomadasys commersonnii (Lacepède 1801), in the Great Fish Estuary, South Africa. Forty individuals (263–698 mm TL) were surgically implanted with acoustic coded transmitters and manually tracked during two periods (7 February to 24 March 2003; n = 20 and 29 September to 15 November 2003; n = 20). Real-time data revealed that spotted grunter are euryhaline (0–37) and are able to tolerate large variations in turbidity (4–356 FTU) and temperature (16–30 °C). However, the fish altered their position in response to large fluctuations in salinity, temperature and turbidity, which are characteristic of tidal estuarine environments. Furthermore, tidal phase had a strong influence on the position of spotted grunter in the estuary

    Connectivity between marine reserves and exploited areas in the philopatric reef fish Chrysoblephus laticeps (Teleostei: Sparidae)

    Get PDF
    "No-take‟ Marine Protected Areas (MPAs) are successful in protecting populations of many exploited fish species, but it is often unclear whether networks of MPAs are adequately spaced to ensure connectivity among reserves, and whether spillover occurs into adjacent exploited areas. Such issues are particularly important in species with low dispersal potential, many of which exist as genetically distinct regional stocks.The roman, Chrysoblephus laticeps, is an overexploited, commercially important fishery species endemic to South Africa. Post-recruits display resident behavior and occupy small home ranges, making C. laticeps a suitable model species to investigate connectivity in marine teleosts with potentially low dispersal ability. We used multilocus data from two types of highly variable genetic markers (mitochondrial DNA control region and microsatellites) to clarify patterns of genetic connectivity and population structure in C. laticeps using samples from two MPAs and several moderately or severely exploited regions. Despite using analytical tools that are sensitive to detect even subtle genetic structure, we found that this species exists as a single, well-mixed stock throughout its core distribution. This finding lends supports to the status of MPAs as an adequate tool for managing overexploited marine teleosts. Even though adult dispersal out of MPAs is limited, the fact that the large adults in these reserves produce exponentially more offspring than their smaller counterparts in exploited areas makes MPAs a rich source of recruits. We nonetheless caution against concluding that the lack of structure identified in C. laticeps and several other southern African teleosts can be considered to be representative of marine teleosts in this region in general. Many such species are represented in more than one marine biogeographic province and may be comprised of regionally-adapted stocks that need to be managed individually

    The taxonomy and life history of the blue stingray, Dasyatis marmorata capensis (Batoidea : Dasyatidae) from Southern Africa

    No full text
    The blue stingray, Dasyatis marmorata capensis is an important recreational shore angling species, especially amongst tournament anglers, in South Africa. The taxonomy and aspects of the biology of this species were investigated from specimens collected between March 1987 and May 1989, from various localities along the southern African coastline. Morphological comparisons were made between Dasyatis pastinaca, Dasyatis marmorata and the local variety. The results indicated that the local variety is different to D. pastinaca in colouration, disc length size, and vertebral and radial counts. The proposed new sub-species Dasyatis marmorata capensis is closest to Dasyatis marmorata of the north-eastern Atlantic coast, but differs in snout angle, disc length and snout to vent length. Analysis of catch per unit of effort data revealed that the blue stingray exhibits distinct seasonality. Adult and sub-adult fish undertake an annual onshore/offshore migration and invade the inshore region between spring and summer, while juveniles remain offshore and utilize this zone as a nursery area. Length-at-age and growth rates for both sexes were estimated from bands formed seasonally in the vertebral centra. The derived von Bertalanffy growth parameters indicated that females reach a greater asymptotic size (913.8 mm DW) and have a slower growth rate (K = -0.07) than males (531.8 mm DW, K = -0.17). Growth rates of juvenile captive specimens compared favourably with back calculated values, at approximately 65 mm/year, for the first year of growth. Dasyatis marmorata capensis is an aplacental viviparous elasmobranch with a well defined annual breeding cycle. Young are released , at a size of 170-200 mm DW, from October to December after a gestation period of approximately nine months. An average fecundity of 3.07 was calculated . Examination of gonadal development indicated that sexual maturity is first attained at a size of 408 and 500 mm DW in males and females, respectively, corresponding to ages 4.5 and 7 years. Size-related food habits were determined independently from three depth zones. The major prey items for each size class were directly related to the abundance of the infauna of the different depth zones. Polychaeta, amphipoda and stomatopoda were the major prey items in the offshore zone. In the nearshore zone, the dominant prey species were Balanoglossus capensis and Callianassa spp .. The high incidence of empty stomachs and the presence of prey items which occur in greatest abundance beyond the surf zone indicated that this zone is not utilized for the purposes of feeding

    Fish population dynamics in a temporarily open/closed South African estuary

    No full text
    The primary aim of this study was to investigate the population dynamics of the fishes associated with a small (17.5 hectares) temporarily open/closed estuary on the south east coast of South Africa. The results are based on the findings of an intensive sampling programme conducted over a period of four years in the East Kleinemonde estuary (33° 32' S : 27° 03' E). By adopting a quantitative approach, this study addresses the need for information on estuarine-associated fish population sizes, standing stock (biomass) estimates and productivity. The ichthyoplankton assemblage in the surf zone adjacent to the mouth of the estuary was dominated by postflexion larvae representing at least 21 taxa in 14 families. Rhabdosargus holubi of sizes ranging between 9 mm and 21 mm BL was the most abundant species with a mean density of 7.3 individuals per 100 m'. This species, which accounted for 77.6% of the catch composition, was recorded throughout the year but revealed a distinct peak in abundance in spring (August - September). The ichthyofaunal community within the East Kleinemonde estuary was dominated by juvenile marine-spawning species and typical of a warm temperate southern African estuary. A total of 30 species in 17 families was recorded, including the endangered estuarine pipefish Syngnathus watermeyeri. Multivariate analyses (classification and ordination) of the catch assemblages revealed a high degree of similarity (> 70%) throughout the estuary, with two distinct groups being identified on the basis of substratum type. The sampling stations near the mouth with a sandy substratum were distinguished from all other sampling sites in the estuary. The dominant estuarine-spawning species were represented by all life-history stages, suggesting that they bred successfully in the estuary. This group was numerically and gravimetrically dominated by the two zooplanktivorous shoaling species Gilchristella aestuaria and Atherina breviceps with density extrapolated population size estimates of 420 973 and 198 275 individuals, and biomass estimates of 1.6 and 0.6 g m⁻² respectively. The total population size of all estuarine-spawning species with a mean biomass 00.4 g m⁻² was estimated at 754 217 individuals. Population size estimates of the marine-spawning species were calculated using data obtained from three independent mark-recapture experiments. The assumptions for the mark-recapture analyses were adequately met and it was concluded that the techniques provided reliable estimates of population size. However, estimates obtained from density extrapolation revealed enormous variability and were considered to be unreliable. The total population size was estimated at 63 342, 18 592 and 13 5 192 during the three mark-recapture experiments respectively. The numerically dominant species during all three experiments was Rhabdosargus holubi. Biomass production of the marine-spawning species was evaluated over a 123 day census period when population sizes and estimates of growth rates were known. Productivity for all fishes with a standing stock of 26.2 g m⁻² was calculated at 4.5 g m⁻² month01 Rhabdosargus holubi accounted for more than 75% of the total marine fish productivity. This study draws attention to the success of Rhabdosargus holubi in the East Kleinemonde estuary, which is ascribed to aspects of its biology. These include an extended breeding season, the ability to recruit into the estuary under adverse open mouth conditions and its omnivorous food habits. The dominance of this migratory species suggests that it plays an important role in the transfer of energy to the coastal marine environment when the mouth of the East Kleinemonde estuary opens. Predation by birds and a dominant piscivorous fish (Lichia amia) was quantitatively assessed over a period of two years. Monthly food consumption by all piscivorous birds revealed large temporal variability, ranging from 32 to 466 kg month-I An unusual invasion of Cape cormorants during the winter of 1994 accounted for large scale mortality (2246 kg of fish) over a relatively short period. The predatory impact of this episodic event was reflected in the findings of the fish mark-recapture experiments, which revealed a 70% reduction in the total population of marine-spawning fishes (above a certain minimum size) in the estuary subsequent to this invasion. Monthly food consumption by the Lichia amia population in the estuary was calculated at 68 and 58 kg month-I for two distinct time periods when the population size was known. These findings suggest that this species is the top piscivorous predator in the East Kleinemonde estuary. Finally, the findings of this study highlight the temporal variability of fish populations within a single estuary. It is suggested that predation and estuary mouth conditions are the main factors influencing the abundance (and its variability) of individual species in the East Kleinemonde estuary

    Do environmental factors influence the movement of estuarine fish? A case study using acoustic telemetry

    No full text
    Telemetry methods were used to investigate the influence of selected environmental variables on the position and movement of an estuarine-dependent haemulid, the spotted grunter Pomadasys commersonnii (Lacepède 1801), in the Great Fish Estuary, South Africa. Forty individuals (263–698 mm TL) were surgically implanted with acoustic coded transmitters and manually tracked during two periods (7 February to 24 March 2003; n = 20 and 29 September to 15 November 2003; n = 20). Real-time data revealed that spotted grunter are euryhaline (0–37) and are able to tolerate large variations in turbidity (4–356 FTU) and temperature (16–30 °C). However, the fish altered their position in response to large fluctuations in salinity, temperature and turbidity, which are characteristic of tidal estuarine environments. Furthermore, tidal phase had a strong influence on the position of spotted grunter in the estuary
    corecore