3,479 research outputs found

    Probabilistic expert systems for handling artifacts in complex DNA mixtures

    Get PDF
    This paper presents a coherent probabilistic framework for taking account of allelic dropout, stutter bands and silent alleles when interpreting STR DNA profiles from a mixture sample using peak size information arising from a PCR analysis. This information can be exploited for evaluating the evidential strength for a hypothesis that DNA from a particular person is present in the mixture. It extends an earlier Bayesian network approach that ignored such artifacts. We illustrate the use of the extended network on a published casework example

    Probabilistic expert systems for handling artifacts in complex DNA mixtures

    Get PDF
    This paper presents a coherent probabilistic framework for taking account of allelic dropout, stutter bands and silent alleles when interpreting STR DNA profiles from a mixture sample using peak size information arising from a PCR analysis. This information can be exploited for evaluating the evidential strength for a hypothesis that DNA from a particular person is present in the mixture. It extends an earlier Bayesian network approach that ignored such artifacts. We illustrate the use of the extended network on a published casework example

    Percentage Leases and the Advantages of Regional Malls

    Get PDF
    The differences in the ownership structures of downtown retail districts and shopping centers may give rise to varying space allocations and rental contracts found in these markets. This article specifically examines the value-enhancing aspects of percentage leases and explores the mechanisms of tenant mix, risk sharing and rent discrimination through which this value is created. The use of percentage leases may lead to superior returns by allowing a rent structure that approaches perfect price discrimination. Risk sharing through the use of percentage leases may also create value for the property owner and lead to lower rents for tenants.

    Decision making with decision event graphs

    Get PDF
    We introduce a new modelling representation, the Decision Event Graph (DEG), for asymmetric multistage decision problems. The DEG explicitly encodes conditional independences and has additional significant advantages over other representations of asymmetric decision problems. The colouring of edges makes it possible to identify conditional independences on decision trees, and these coloured trees serve as a basis for the construction of the DEG. We provide an efficient backward-induction algorithm for finding optimal decision rules on DEGs, and work through an example showing the efficacy of these graphs. Simplifications of the topology of a DEG admit analogues to the sufficiency principle and barren node deletion steps used with influence diagrams

    Estimation of Parameters in DNA Mixture Analysis

    Full text link
    In Cowell et al. (2007), a Bayesian network for analysis of mixed traces of DNA was presented using gamma distributions for modelling peak sizes in the electropherogram. It was demonstrated that the analysis was sensitive to the choice of a variance factor and hence this should be adapted to any new trace analysed. In the present paper we discuss how the variance parameter can be estimated by maximum likelihood to achieve this. The unknown proportions of DNA from each contributor can similarly be estimated by maximum likelihood jointly with the variance parameter. Furthermore we discuss how to incorporate prior knowledge about the parameters in a Bayesian analysis. The proposed estimation methods are illustrated through a few examples of applications for calculating evidential value in casework and for mixture deconvolution

    Phonon transport in large scale carbon-based disordered materials: Implementation of an efficient order-N and real-space Kubo methodology

    Get PDF
    We have developed an efficient order-N real-space Kubo approach for the calculation of the phonon conductivity which outperforms state-of-the-art alternative implementations based on the Green's function formalism. The method treats efficiently the time-dependent propagation of phonon wave packets in real space, and this dynamics is related to the calculation of the thermal conductance. Without loss of generality, we validate the accuracy of the method by comparing the calculated phonon mean free paths in disordered carbon nanotubes (isotope impurities) with other approaches, and further illustrate its upscalability by exploring the thermal conductance features in large width edge-disordered graphene nanoribbons (up to ~20 nm), which is out of the reach of more conventional techniques. We show that edge-disorder is the most important scattering mechanism for phonons in graphene nanoribbons with realistic sizes and thermal conductance can be reduced by a factor of ~10.Comment: Accepted for publication in Physical Review B - Rapid Communication
    corecore