740 research outputs found

    Development of closed loop roll control for magnetic balance systems

    Get PDF
    This research was undertaken with the goal of demonstrating closed loop control of the roll degree of freedom on the NASA prototype magnetic suspension and balance system at the MIT Aerophysics Laboratory, thus, showing feasibility for a roll control system for any large magnetic balance system which might be built in the future. During the research under this grant, study was directed toward the several areas of torque generation, position sensing, model construction and control system design. These effects were then integrated to produce successful closed loop operation of the analogue roll control system. This experience indicated the desirability of microprocessor control for the angular degrees of freedom

    Application of digital control to a magnetic model suspension and balance model

    Get PDF
    The feasibility of using a digital computer for performing the automatic control functions for a magnetic suspension and balance system (MSBS) for use with wind tunnel models was investigated. Modeling was done using both a prototype MSBS and a one dimensional magnetic balance. A microcomputer using the Intel 8080 microprocessor is described and results are given using this microprocessor to control the one dimensional balance. Hybrid simulations for one degree of freedom of the MSBS were also performed and are reported. It is concluded that use of a digital computer to control the MSBS is eminently feasible and should extend both the accuracy and utility of the system

    Application of superconducting coils to the NASA prototype magnetic balance

    Get PDF
    Application of superconducting coils to a general purpose magnetic balance was studied. The most suitable currently available superconducting cable for coils appears to be a bundle of many fine wires which are transposed and are mechanically confined. Sample coils were tested at central fields up to .5 Tesla, slewing rates up to 53 Tesla/ sec and frequencies up to 30 Hz. The ac losses were measured from helium boil-off and were approximately 20% higher than those calculated. Losses were dominated by hysteresis and a model for loss calculation which appears suitable for design purposes is presented along with computer listings. Combinations of two coils were also tested and interaction losses are reported. Two feasible geometries are also presented for prototype magnetic balance using superconductors

    Algorithms to estimate Shapley value feature attributions

    Full text link
    Feature attributions based on the Shapley value are popular for explaining machine learning models; however, their estimation is complex from both a theoretical and computational standpoint. We disentangle this complexity into two factors: (1)~the approach to removing feature information, and (2)~the tractable estimation strategy. These two factors provide a natural lens through which we can better understand and compare 24 distinct algorithms. Based on the various feature removal approaches, we describe the multiple types of Shapley value feature attributions and methods to calculate each one. Then, based on the tractable estimation strategies, we characterize two distinct families of approaches: model-agnostic and model-specific approximations. For the model-agnostic approximations, we benchmark a wide class of estimation approaches and tie them to alternative yet equivalent characterizations of the Shapley value. For the model-specific approximations, we clarify the assumptions crucial to each method's tractability for linear, tree, and deep models. Finally, we identify gaps in the literature and promising future research directions

    Hygroscopic properties of different aerosol types over the Atlantic and Indian Oceans

    Get PDF
    Hygroscopic properties of atmospheric particles were studied in the marine tropospheric boundary layer over the Atlantic and Indian Oceans during two consecutive field studies: the Aerosols99 cruise (Atlantic Ocean) from 15 January to 20 February 1999, and the INDOEX cruise (Indian Ocean Experiment) from 23 February to 30 March 1999. The hygroscopic properties were compared to optical and chemical properties, such as absorption, chemical inorganic composition, and mass concentration of organic and elemental carbon, to identify the influence of these parameters on hygroscopicity. During the two field studies, four types of aerosol-sampling instruments were used on board the NOAA (National Oceanic and Atmospheric Administration) Research Vessel Ronald H. Brown: Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA), seven-stage cascade impactor, two-stage cascade impactor, and Particle Soot Absorption Photometer (PSAP). The HTDMA was used to determine the hygroscopic properties of atmospheric particles at initial dry sizes (Dp) of 50, 150, and 250 nm and at relative humidities (RH) of 30, 55, 75, and 90%. Simultaneously, a seven-stage cascade impactor of which 3 stages were in the sub-mm size range was used to determine the molar composition of the major inorganic ions such as ammonium and sulfate ions. A two-stage cascade impactor (1 in the sub-mm size range, 1 in the sup-mm size range) was used to determine the mass concentration of organic and elemental carbon. The PSAP was used (at a wavelength of 565 nm) to measure the light absorption coefficient of the aerosol. During the two field studies, air masses of several different origins passed the ship's cruise path. The occurrence of different air masses was classified into special time periods signifying the origin of the observed aerosol. All time periods showed a group of particles with high hygroscopic growth. The measured average hygroscopic growth factors defined by the ratio of dry and wet particle diameter at 90% RH ranged from 1.6 to 2.0, depending on the dry particle size and on the type of air mass. Particles with low hygroscopic growth occurred only when continentally influenced air masses arrived at the ship's position. Distinctions in hygroscopic growth of particles of different air masses were more significant for small relative humidities (30% or 55% RH). High concentrations of elemental carbon corresponded with high light absorption coefficients and with the occurrence of less-hygroscopic and nearly hydrophobic particle fractions in the hygroscopic growth distributions. A key finding is that clean marine air masses that had no land contact for five to six days could clearly be distinguished from polluted air masses that had passed over a continent several days before reaching the ship
    corecore