63 research outputs found

    Helicobacter pylori adaptation in vivoin response to a high salt diet

    Get PDF
    Helicobacter pylori exhibits a high level of intraspecies genetic diversity. In this study, we investigated whether the diversification of H. pylori is influenced by the composition of the diet. Specifically, we investigated the effect of a high salt diet (a known risk factor for gastric adenocarcinoma) on H. pylori diversification within a host. We analyzed H. pylori strains isolated from Mongolian gerbils fed either a high salt diet or a regular diet for four months, using proteomic and whole genome sequencing methods. Compared to the input strain and output strains from animals fed a regular diet, the output strains from animals fed a high salt diet produced higher levels of proteins involved in iron acquisition and oxidative stress resistance. Several of these changes were attributable to a non-synonymous mutation in fur (fur-R88H). Further experiments indicated that this mutation conferred increased resistance to high salt conditions and oxidative stress. We propose a model in which a high salt diet leads to high levels of gastric inflammation and associated oxidative stress in H. pylori-infected animals, and that these conditions along with the high intraluminal concentrations of sodium chloride lead to selection of H. pylori strains that are most fit for growth in this environment

    Motif Discovery through Predictive Modeling of Gene Regulation

    Full text link
    We present MEDUSA, an integrative method for learning motif models of transcription factor binding sites by incorporating promoter sequence and gene expression data. We use a modern large-margin machine learning approach, based on boosting, to enable feature selection from the high-dimensional search space of candidate binding sequences while avoiding overfitting. At each iteration of the algorithm, MEDUSA builds a motif model whose presence in the promoter region of a gene, coupled with activity of a regulator in an experiment, is predictive of differential expression. In this way, we learn motifs that are functional and predictive of regulatory response rather than motifs that are simply overrepresented in promoter sequences. Moreover, MEDUSA produces a model of the transcriptional control logic that can predict the expression of any gene in the organism, given the sequence of the promoter region of the target gene and the expression state of a set of known or putative transcription factors and signaling molecules. Each motif model is either a kk-length sequence, a dimer, or a PSSM that is built by agglomerative probabilistic clustering of sequences with similar boosting loss. By applying MEDUSA to a set of environmental stress response expression data in yeast, we learn motifs whose ability to predict differential expression of target genes outperforms motifs from the TRANSFAC dataset and from a previously published candidate set of PSSMs. We also show that MEDUSA retrieves many experimentally confirmed binding sites associated with environmental stress response from the literature.Comment: RECOMB 200

    High resolution structural analysis of Helicobacter pylori VacA toxin oligomers by cryo-negative staining electron microscopy.

    No full text
    Helicobacter pylori secretes a vacuolating toxin (VacA) that can assemble into water-soluble oligomeric complexes and insert into membranes to form anion-selective channels. Previous studies have described multiple types of oligomeric VacA structures, including single-layered astral arrays, bilayered forms, and two-dimensional crystalline arrays. In the current study, vitrified VacA complexes were examined by cryo-negative staining electron microscopy, views of the different oligomeric structures in multiple orientations were classified and analyzed, and three-dimensional models of the bilayered forms of VacA were constructed with a resolution of about 19 angstroms. These bilayered forms of VacA have a "flower"-like structure, consisting of a central ring surrounded by symmetrically arranged peripheral "petals." Further structural insights were obtained by analyzing a mutant form of VacA (VacADelta6-27), which lacks a unique amino-terminal hydrophobic segment and is defective in the capacity to form membrane channels. Bilayered oligomeric complexes formed by wild-type VacA contained a visible density within the central ring, whereas bilayered complexes formed by VacADelta6-27 lacked this density. These results indicate that deletion of the VacA amino-terminal hydrophobic region causes a structural alteration in the central ring within VacA oligomers, and suggest that the central ring plays an important role in the process by which VacA forms membrane channels

    Acid activation of Helicobacter pylori vacuolating cytotoxin (VacA) results in toxin internalization by eukaryotic cells

    No full text

    Yersinien

    No full text
    corecore