704 research outputs found
Disordered graphene Josephson junctions
A tight-binding approach based on the Chebyshev-Bogoliubov-de Gennes method
is used to describe disordered single-layer graphene Josephson junctions.
Scattering by vacancies, ripples or charged impurities is included. We compute
the Josephson current and investigate the nature of multiple Andreev
reflections, which induce bound states appearing as peaks in the density of
states for energies below the superconducting gap. In the presence of single
atom vacancies, we observe a strong suppression of the supercurrent that is a
consequence of strong inter-valley scattering. Although lattice deformations
should not induce inter-valley scattering, we find that the supercurrent is
still suppressed, which is due to the presence of pseudo-magnetic barriers. For
charged impurities, we consider two cases depending on whether the average
doping is zero, i.e. existence of electron-hole puddles, or finite. In both
cases, short range impurities strongly affect the supercurrent, similar to the
vacancies scenario
Tight-binding study of bilayer graphene Josephson junctions
Using highly efficient simulations of the tight-binding Bogoliubov-de Gennes
model we solved self-consistently for the pair correlation and the Josephson
current in a Superconducting-Bilayer graphene-Superconducting Josephson
junction. Different doping levels for the non-superconducting link are
considered in the short and long junction regime. Self-consistent results for
the pair correlation and superconducting current resemble those reported
previously for single layer graphene except in the Dirac point where remarkable
differences in the proximity effect are found as well as a suppression of the
superconducting current in long junction regime. Inversion symmetry is broken
by considering a potential difference between the layers and we found that the
supercurrent can be switched if junction length is larger than the Fermi
length
Partially unzipped carbon nanotubes as magnetic field sensors
The conductance, , through graphene nanoribbons (GNR) connected to a
partially unzipped carbon nanotube (CNT) is studied in the presence of an
external magnetic field applied parallel to the long axis of the tube by means
of non-equilibrium Green's function technique. We consider (z)igzag and
(a)rmchair CNTs that are partially unzipped to form aGNR/zCNT/aGNR or
zGNR/aCNT/zGNR junctions. We find that the inclusion of a longitudinal magnetic
field affects the electronic states only in the CNT region, leading to the
suppression of the conductance at low energies. Unlike previous studies, for
the zGNR/aCNT/zGNR junction in zero field, we find a sharp dip in the
conductance as the energy approaches the Dirac point and we attribute this
non-trivial behavior to the peculiar band dispersion of the constituent
subsystems. We demonstrate that both types of junctions can be used as magnetic
field sensors.Comment: final version to appear in Applied Physics Letter
Tight-binding description of intrinsic superconducting correlations in multilayer graphene
Using highly efficient GPU-based simulations of the tight-binding
Bogoliubov-de Gennes equations we solve self-consistently for the pair
correlation in rhombohedral (ABC) and Bernal (ABA) multilayer graphene by
considering a finite intrinsic s-wave pairing potential. We find that the two
different stacking configurations have opposite bulk/surface behavior for the
order parameter. Surface superconductivity is robust for ABC stacked multilayer
graphene even at very low pairing potentials for which the bulk order parameter
vanishes, in agreement with a recent analytical approach. In contrast, for
Bernal stacked multilayer graphene, we find that the order parameter is always
suppressed at the surface and that there exists a critical value for the
pairing potential below which no superconducting order is achieved. We
considered different doping scenarios and find that homogeneous doping strongly
suppresses surface superconductivity while non-homogeneous field-induced doping
has a much weaker effect on the superconducting order parameter. For multilayer
structures with hybrid stacking (ABC and ABA) we find that when the thickness
of each region is small (few layers), high-temperature surface
superconductivity survives throughout the bulk due to the proximity effect
between ABC/ABA interfaces where the order parameter is enhanced.Comment: 7 page
Developing navigational services for people with Down's Syndrome
The ability to commute and travel alone is an important skill that enables people to be more independent, and integrated with society. People with Down's Syndrome often experience low social integration, and low degree of independence. As part of the European Commission funded POSEIDON project, we want to explore how context-aware, and assistive technology can enable users with Down's Syndrome be more independent, including the ability to commute alone to a place of interest. In this paper, we report on our current progress in developing navigational services within the context of the POSEIDON project. We carried out a semi-structured qualitative evaluation of an early version of our navigational services with 6 individuals with Down's Syndrome, and report on our findings
Wavepacket scattering on graphene edges in the presence of a (pseudo) magnetic field
The scattering of a Gaussian wavepacket in armchair and zigzag graphene edges
is theoretically investigated by numerically solving the time dependent
Schr\"odinger equation for the tight-binding model Hamiltonian. Our theory
allows to investigate scattering in reciprocal space, and depending on the type
of graphene edge we observe scattering within the same valley, or between
different valleys. In the presence of an external magnetic field, the well know
skipping orbits are observed. However, our results demonstrate that in the case
of a pseudo-magnetic field, induced by non-uniform strain, the scattering by an
armchair edge results in a non-propagating edge state.Comment: 8 pages, 7 figure
Wave packet dynamics and valley filter in strained graphene
The time evolution of a wavepacket in strained graphene is studied within the
tight-binding model and continuum model. The effect of an external magnetic
field, as well as a strain-induced pseudo-magnetic field, on the wave packet
trajectories and zitterbewegung are analyzed. Combining the effects of strain
with those of an external magnetic field produces an effective magnetic field
which is large in one of the Dirac cones, but can be practically zero in the
other. We construct an efficient valley filter, where for a propagating
incoming wave packet consisting of momenta around the K and K' Dirac points,
the outgoing wave packet exhibits momenta in only one of these Dirac points,
while the components of the packet that belong to the other Dirac point are
reflected due to the Lorentz force. We also found that the zitterbewegung is
permanent in time in the presence of either external or strain-induced magnetic
fields, but when both the external and strain-induced magnetic fields are
present, the zitterbewegung is transient in one of the Dirac cones, whereas in
the other cone the wave packet exhibits permanent spatial oscillations.Comment: 13 pages, 10 figure
Polybrominated diphenyl ethers in marine species from the Belgian North Sea and the Western Scheldt Estuary: levels, profiles, and distribution
The Western Scheldt Estuary (SE) is subjected to a variety of suspected PBDE sources, such as a brominated flame retardant manufacturing plant, the Antwerp harbor, and the textile industry located further upstream the river. The Belgian North Sea (BNS) was included in this study to analyze the influence of the SE on the levels found in biota from the BNS locations. Benthic invertebrates, such as shrimp, crab, and starfish, benthic fish, such as goby, dab, plaice, and sole, and gadoid fish, such as bib and whiting, were sampled in the BNS (nonpolluted area) and the SE (polluted area) and analyzed to determine the concentrations and spatial variation of eight polybrominated diphenyl ethers (PBDEs 28, 47, 99, 100, 153, 154, 183, and 209). Levels found in the SE samples were up to 30 times higher than those found in BNS samples, with a gradient increasing toward Antwerp. Levels in BNS ranged from 0.02 to 1.5 ng/g ww in benthic invertebrates and goby, from 0.06 to 0.94 ng/g ww in fish muscle, and from 0.84 to 128 ng/g ww in fish liver. For the SE samples, levels ranged from 0.20 to 29.9 ng/g ww in benthic invertebrates and goby, from 0.08 to 6.9 ng/g ww in fish muscle, and from 15.0 to 984 ng/g ww in fish liver. BDE 209 could only be detected in eight liver samples from the SE and levels ranged between 3.4 and 37.2 ng/g ww. PBDE profiles of the various species at the different locations were compared. Differences in profile were attributed to different exposure and to differences in metabolism among species. Ratios between EDE 99 and 100 were found to be highly location and species dependent, which could be related to differences in metabolism. Some species, such as dab, plaice bib, and whiting, showed preferential accumulation of PBDEs in the liver. Higher brominated congeners in general showed higher affinity for liver than for muscle tissue
- …