921 research outputs found

    Groundwater reinjection and heat dissipation: lessons from the operation of a large groundwater cooling system in Central London

    Get PDF
    The performance of a large open-loop groundwater cooling scheme in a shallow alluvial aquifer at a prominent public building in Central London has been monitored closely over its first 2 years of operation. The installed system provided cooling to the site continuously for a period of 9 months between June 2012 and April 2013. During this period, c. 131300 m3 of groundwater was abstracted from a single pumping well and recharged into a single injection borehole. The amount of heat rejected in this period amounts to c. 1.37 GWh. A programme of hydraulic testing was subsequently undertaken over a 3 month period between July and October 2013 to evaluate the performance of the injection borehole. The data indicate no significant change in injection performance between commissioning trials undertaken in 2010 and the most recent period of testing, as evidenced by comparison of injection pressures for given flow rates in 2010 and 2013. Continuous temperature monitoring of the abstracted water, the discharge and a number of observation wells demonstrates the evolution of a heat plume in the aquifer in response to heat rejection and subsequent dissipation of this heat during the 18 month planned cessation

    The Effects of High-Intensity Multimodal Training in Apparently Healthy Populations: A Systematic Review.

    Full text link
    BACKGROUND: High-intensity multimodal training (HIMT) is emerging as a popular training method that combines aerobic and resistance training throughout a single exercise session. The current literature is limited by a lack of terminology that broadly encompasses all styles of combined aerobic and resistance training. The magnitude of chronic or long-term (i.e.  ≥ 4 weeks) effects of HIMT participation on aerobic and muscular fitness also remains unclear. Additionally, one of many complex reasons for the growing popularity of HIMT may be attributed to the affective response to exercise, namely levels of enjoyment. However, this concept is not yet well understood across all styles of HIMT. A comprehensive systematic review is required to synthesise the available literature and attempt to provide an operational definition of HIMT to capture the breadth of combined training styles that exist. OBJECTIVE: The objective of this systematic review was to determine the chronic effects of HIMT participation on aerobic and muscular fitness and to compare HIMT to established concurrent training methods. Enjoyability and other adherence-related subjective responses were also examined in HIMT participants. This review critically assessed the level of evidence and feasibility of current HIMT guidelines. METHODS: A systematic literature search was conducted on PubMed, Web of Science and SPORTDiscus to identify studies up until March 2021. RESULTS: A total of 20 studies were included for review. Studies generally reported moderate to large effects on aerobic fitness and subjective responses in favour of HIMT interventions. Mixed outcomes were demonstrated in muscular fitness. These results should be treated with caution due to high risk of bias among included studies. CONCLUSIONS: Few studies have assessed the chronic effects of HIMT participation on aerobic, and musculoskeletal adaptations and subjective responses, in particular exercise enjoyment. Research conclusions are limited by heterogeneity of experimental protocols and outcome measures. Furthermore, the inability of the literature to make adequate comparisons between various styles of HIMT and other concurrent training protocols limits understandings of the efficacy of HIMT. Registration This systematic review was registered on the Open Science Framework (10.17605/OSF.IO/2RE4B; 26 March 2021)

    Identification of genetic changes associated with drug resistance by reverse in situ hybridization.

    Get PDF
    The molecular cytogenetic techniques of comparative genomic hybridization (CGH) and reverse in situ hybridization (REVISH) allow the entire genomes of tumours to be screened for genetic changes without the requirement for specific probes or markers. In order to define the ability of REVISH to detect and map regions of amplification associated with drug resistance, we investigated a panel of cell lines selected for resistance to doxorubicin and intrinsic sensitivity to topoisomerase II-inhibitory drugs. We have defined a modified REVISH protocol, which involves double hybridizations with genomic DNA from the test cell lines and chromosome-specific whole chromosome paints to identify the chromosomes to which the amplicons localize. Sites of amplification are then mapped by fractional length measurements (Flpter), using published genome databases. Our findings show that amplification of the topoisomerase II alpha gene is readily detected and mapped, as is amplification of the MDR and MRP loci. Interestingly, REVISH detected a new amplicon in the doxorubicin-resistant lung cancer cell line, GLC4-ADR, which mapped to chromosome 1q. REVISH is therefore ideally suited to characterize genetic changes specific for drug resistance within a background of genetic anomalies associated with tumour progression

    A new light at the end of the tunnel: fiber gas discharge lasers

    Full text link
    Optical fibers have emerged as a transformative platform for building better and more robust solid state lasers. However, the wavelengths available to these lasers are limited. Using hollow core optical fibers allows us to add gases as new potential gain media for fiber lasers, and also liberates the gas laser from the limits normally imposed by diffraction. To demonstrate the new technology, we present a fiber laser at 3500 nm wavelength, using an antiresonant guiding hollow core optical fiber containing neutral xenon atoms pumped by an afterglow discharge of a helium-xenon mixture within a fiber of over 1 m in length. Laser action is confirmed through observation of polarization dependence, mode pulling and mode beating. Our results unlock a new breed of flexible fiber lasers operating at a plethora of wavelengths, many previous unavailable.Comment: 10 page

    Weak lensing surveys and the intrinsic correlation of galaxy ellipticities

    Get PDF
    We explore the possibility that an intrinsic correlation between galaxy ellipticities arising during the galaxy formation process may account for part of the shear signal recently reported by several groups engaged in weak lensing surveys. Using high resolution N-body simulations we measure the projected ellipticities of dark matter halos and their correlations as a function of pair separation. With this simplifying, but not necessarily realistic assumption (halo shapes as a proxy for galaxy shapes), we find a positive detection of correlations up to scales of at least 20 h^-1mpc (limited by the box size). The signal is not strongly affected by variations in the halo finding technique, or by the resolution of the simulations. We translate our 3d results into angular measurements of ellipticity correlation functions and shear variance which can be directly compared to observations. We also measure similar results from simulated angular surveys made by projecting our simulation boxes onto the plane of the sky and applying a radial selection function. Interestingly, the shear variance we measure is a small, but not entirely negligible fraction (from ~10-20 %) of that seen by the observational groups, and the ellipticity correlation functions approximately mimic the functional form expected to be caused by weak lensing. The amplitude depends on the width in redshift of the galaxy distribution. If photometric redshifts are used to pick out a screen of background galaxies with a small width, then the intrinsic correlation may become comparable to the weak lensing signal. Although we are dealing with simulated dark matter halos, whether there is a signal from real galaxies could be checked with a nearby sample with known redshifts.Comment: 12 pages, 11 ps figures, emulateapj.sty, submitted to Ap

    Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1.

    Get PDF
    Neurofibromatosis Type 1 (NF1) is a genetic disease caused by mutations in Neurofibromin 1 (NF1). NF1 patients present with a variety of clinical manifestations and are predisposed to cancer development. Many NF1 animal models have been developed, yet none display the spectrum of disease seen in patients and the translational impact of these models has been limited. We describe a minipig model that exhibits clinical hallmarks of NF1, including café au lait macules, neurofibromas, and optic pathway glioma. Spontaneous loss of heterozygosity is observed in this model, a phenomenon also described in NF1 patients. Oral administration of a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor suppresses Ras signaling. To our knowledge, this model provides an unprecedented opportunity to study the complex biology and natural history of NF1 and could prove indispensable for development of imaging methods, biomarkers, and evaluation of safety and efficacy of NF1-targeted therapies

    Hypoxia-driven cell motility reflects the interplay between JMY and HIF-1α.

    Get PDF
    Junction-mediating and regulatory protein (JMY) is a novel p53 cofactor that regulates p53 activity during stress. JMY interacts with p300/CBP, which are ubiquitous transcriptional co-activators that interact with a variety of sequence-specific transcription factors, including hypoxia-inducible factor-1α (HIF-1α). In addition, JMY is an actin-nucleating protein, which, through its WH2 domains, stimulates cell motility. In this study, we show that JMY is upregulated during hypoxia in a HIF-1α-dependent manner. The JMY gene contains HIF-responsive elements in its promoter region and HIF-1α is recruited to its promoter during hypoxia. HIF-1α drives transcription of JMY, which accounts for its induction under hypoxia. Moreover, the enhanced cell motility and invasion that occurs during hypoxia requires JMY, as depleting JMY under hypoxic conditions causes decreased cell motility. Our results establish the interplay between JMY and HIF-1α as a new mechanism that controls cell motility under hypoxic stress

    A systematic review investigating fatigue, psychological and cognitive impairment following TIA and minor stroke:protocol paper

    Get PDF
    Approximately 20,000 people have a transient ischemic attack (TIA) and 23,375 have a minor stroke in England each year. Fatigue, psychological and cognitive impairments are well documented post-stroke. Evidence suggests that TIA and minor stroke patients also experience these impairments; however, they are not routinely offered relevant treatment. This systematic review aims to: (1) establish the prevalence of fatigue, anxiety, depression, post-traumatic stress disorder (PTSD) and cognitive impairment following TIA and minor stroke and to investigate the temporal course of these impairments; (2) explore impact on quality of life (QoL), change in emotions and return to work; (3) identify where further research is required and to potentially inform an intervention study
    • …
    corecore