2,844 research outputs found
Dirac and Majorana heavy neutrinos at LEP II
The possibility of detecting single heavy Dirac and Majorana neutrinos at LEP
II is investigated for heavy neutrino masses in the range . We study the process as a clear signature for heavy neutrinos. Numerical estimates for
cross sections and distributions for the signal and the background are
calculated and a Monte Carlo reconstruction of final state particles after
hadronization is presented.Comment: 4 pages, 8 figure
Discriminating among the theoretical origins of new heavy Majorana neutrinos at the CERN LHC
A study on the possibility of distinguishing new heavy Majorana neutrino
models at LHC energies is presented. The experimental confirmation of standard
neutrinos with non-zero mass and the theoretical possibility of lepton number
violation find a natural explanation when new heavy Majorana neutrinos exist.
These new neutrinos appear in models with new right-handed singlets, in new
doublets of some grand unified theories and left-right symmetrical models. It
is expected that signals of new particles can be found at the CERN high-energy
hadron collider (LHC). We present signatures and distributions that can
indicate the theoretical origin of these new particles. The single and pair
production of heavy Majorana neutrinos are calculated and the model dependence
is discussed. Same-sign dileptons in the final state provide a clear signal for
the Majorana nature of heavy neutrinos, since there is lepton number violation.
Mass bounds on heavy Majorana neutrinos allowing model discrimination are
estimated for three different LHC luminosities.Comment: 7 pages, 5 figure
Neutral heavy lepton production at next high energy linear colliders
The discovery potential for detecting new heavy Majorana and Dirac neutrinos
at some recently proposed high energy colliders is discussed. These
new particles are suggested by grand unified theories and superstring-inspired
models. For these models the production of a single heavy neutrino is shown to
be more relevant than pair production when comparing cross sections and
neutrino mass ranges.
The process is calculated
including on-shell and off-shell heavy neutrino effects.
We present a detailed study of cross sections and distributions that shows a
clear separation between the signal and standard model contributions, even
after including hadronization effects.Comment: 4 pages including 15 figures, 1 table. RevTex. Accepted in Physical
Review
- …