93 research outputs found

    The Tully-Fisher Zero Point Problem

    Full text link
    A long standing problem for hierarchical disk galaxy formation models has been the simultaneous matching of the zero point of the Tully-Fisher relation and the galaxy luminosity function (LF). We illustrate this problem for a typical disk galaxy and discuss three solutions: low stellar mass-to-light ratios, low initial dark halo concentrations, and no halo contraction. We speculate that halo contraction may be reversed through a combination of mass ejection through feedback and angular momentum exchange brought about by dynamical friction between baryons and dark matter during the disk formation process.Comment: 4 pages, 1 figure, to appear in proceedings of "Formation and Evolution of Galaxy Disks", Rome, October 2007, Eds. J.G. Funes, S.J. and E.M. Corsin

    The Bulge-Halo Connection in Galaxies: A Physical Interpretation of the Vcirc-sigma_0 Relation

    Full text link
    We explore the dependence of the ratio of a galaxy's circular velocity, Vcirc, to its central velocity dispersion, sigma_0, on morphology, or equivalently total light concentration. Such a dependence is expected if light traces the mass. Over the full range of galaxy types, masses and brightnesses, and assuming that the gas velocity traces the circular velocity, we find that galaxies obey the relation log(Vcirc/sigma_0)= 0.63-0.11*C28 where C28=5log(r80/r20) and the radii are measured at 80 percent and 20 percent of the total light. Massive galaxies scatter about the Vcirc = sqrt(2)*sigma_0 line for isothermal stellar systems. Disk galaxies follow the simple relation Vcirc/sigma_0=2(1-B/T), where B/T is the bulge-to-total light ratio. For pure disks, C28~2.8, B/T -> 0, and Vcirc~=2*sigma_0. Self-consistent equilibrium galaxy models from Widrow & Dubinski (2005) constrained to match the size-luminosity and velocity-luminosity relations of disk galaxies fail to match the observed Vcirc/sigma_0 distribution. Furthermore, the matching of dynamical models for Vcirc(r)/sigma(r) with observations of dwarf and elliptical galaxies suffers from limited radial coverage and relatively large error bars; for dwarf systems, however, kinematical measurements at the galaxy center and optical edge suggest Vcirc(Rmax) > 2*sigma_0 (in contrast with past assumptions that Vcirc = sqrt(2)*sigma_0 for dwarfs.) The Vcirc-sigma_0-C28 relation has direct implications for galaxy formation and dynamical models, galaxy scaling relations, the mass function of galaxies, and the links between respective formation and evolution processes for a galaxy's central massive object, bulge, and dark matter halo.Comment: Accepted for publication in ApJL. Current version matches ApJL page requiremen

    MaNGA galaxy properties -- II. A detailed comparison of observed and simulated spiral galaxy scaling relations

    Full text link
    We present a catalogue of dynamical properties for 2368 late-type galaxies from the MaNGA survey. The latter complements the catalogue of photometric properties for the same sample based on deep optical DESI photometry processed with AutoProf. Rotation curves (RCs), extracted by model fitting Hα\alpha velocity maps from the MaNGA Data Analysis Pipeline, extend out to 1.4 (1.9) Re_{e} for the primary (secondary) MaNGA samples. The RCs and ancillary MaNGA Pipe3D data products were used to construct various fundamental galaxy scaling relations that are also compared uniformly with similar relations from NIHAO zoom-in simulations. Simulated NIHAO galaxies were found to broadly reproduce the observed MaNGA galaxy population for log(M/M)>8.5\log (M_*/{\rm M_{\odot}) > 8.5}. Some discrepancies remain, such as those pertaining to central stellar densities and the diversity of RCs due to strong feedback schemes. Also presented are spatially-resolved scatters for the velocity-size-stellar mass (VRM_*) structural relations using MaNGA and NIHAO samples. The scatter for these relations in the galaxian interiors is a consequence of the diversity of inner RC shapes, while scatter in the outskirts is dictated by the large range of stellar surface densities which itself is driven by sporadic star formation. The detailed spatially-resolved scatter analysis highlights the complex interplay between local and global astrophysical processes and provides a strong constraint to numerical simulations.Comment: 21 pages, 13 Figures, Accepted for publication in MNRA

    Bulge-Disk Decompositions and Structural Bimodality of Ursa Major Cluster Spiral Galaxies

    Full text link
    We present bulge and disk (B/D) decompositions of existing K'-band surface brightness profiles for 65 Ursa Major cluster spiral galaxies. This improves upon the disk-only fits of Tully et al. (1996). The 1996 disk fits were used by Tully & Verheijen (1997) for their discovery of the bimodality of structural parameters in the UMa cluster galaxies. It is shown that our new 1D B/D decompositions yield disk structural parameters that differ only slightly from the basic fits of Tully et al. and evidence for structural bimodality of UMa galaxies is maintained. Our B/D software for the decomposition of 1D surface brightness profiles of galaxies uses a non-linear minimization scheme to recover the best fitting Sersic bulge and exponential disk while accounting for the possible presence of a compact nucleus and spiral arms and for the effects of seeing and disk truncations. In agreement with Tully & Verheijen, we find that the distribution of near-infrared disk central surface brightnesses is bimodal with an F-test confidence of 80%. There is also strong evidence for a local minimum in the luminosity function at M_K' ~ -22. A connection between the brightness bimodality and a dynamical bimodality, based on new HI line widths, is identified. The B/D parameters are presented in an Appendix.Comment: Accepted for publication in MNRA
    corecore