7 research outputs found

    Polyvinyl Alcohol Cryogel Based Vessel Mimicking Material for Modelling the Progression of Atherosclerosis

    Get PDF
    Purpose The stiffness of Polyvinyl-alcohol cryogel can be adjusted through application of consecutive freeze-thaw cycles. This material has potential applications in the production of tissue mimicking phantoms in diagnostic ultrasound. The aim of this study was to use PVA-c to produce a range of geometrically and acoustically identical vessel phantoms modelling stages of atherosclerosis which could be verified through mechanical testing, thus allowing for more precision in quantitative in-vitro flow analysis of atherosclerosis. Methods A series of anatomically realistic walled renal artery flow phantoms were constructed using PVA-c. In order to ensure precise modelling of atherosclerosis, a modified procedure of ISO27:2017 was used to compare the mechanical properties of PVA-c. Results were compared for the standard “dumbbell” test object and a modified vessel test object. The geometric accuracy and reproducibility of the vessel models were tested before and after implantation in flow phantoms. Results No significant difference was found between the mechanical properties of the dumbbell test samples and the vessels for any number of freeze thaw cycles, with a correlation coefficient of R2 = 0.9767 across the dataset, indicating that a direct comparison between the mechanical properties of the dumbbell test samples and the phantom vessels was established. The geometric reproducibility showed that before and after implantation there was no significant difference between individual vessel geometries (p = 0.337 & p = 0.176 respectively). Conclusions Polyvinyl-alcohol cryogel is a useful material for the production of arterial flow phantoms. Care should be taken when using this material to ensure its mechanical properties have been correctly characterised. The guidelines of ISO37:2017 potentially provide the best procedure to ensure this

    Investigation of the assessment of low degree (\u3c50%) renal artery stenosis based on velocity flow profile analysis using Doppler ultrasound: An in-vitro study

    Get PDF
    Purpose: Renal arterial stenosis can lead to disrupted renal function due to reduced blood flow to the kidneys and is largely thought to be caused by atherosclerosis. Current diagnostic strategies for renal arterial stenosis rely on detecting large degree stenoses (\u3e50%). This study aimed to test the viability of using Doppler ultrasound to assess velocity profiles to detect the presence of low degree (\u3c50%) stenoses. Methods: A series of anatomically realistic renal artery flow phantoms were constructed exhibiting a range of low degree stenoses (symmetric and asymmetric). The behaviour of fluid flow in the phantoms was examined using Doppler ultrasound and analysed to calculate the clinical biomarker, wall shear stress. Results: A number of fluid behaviours were observed in relation to stenosis degree: asymmetric stenoses tended to result in a skewing of peak velocities away from the centre of the vessel towards the outer wall, the magnitude of increase in velocity was observed to correlate with stenosis degree, and the wall shear stress curves observed large peaks in the presence of even the lowest degree stenosis (20%). Conclusions: Doppler ultrasound could potentially be utilised to diagnose low degree stenoses in a clinical setting. Doppler ultrasound in conjunction with wall shear stress analysis in particular has significant potential in the diagnosis of renal artery stenosis

    Development and Evaluation of a Multifrequency Ultrafast Doppler Spectral Analysis (MFUDSA) Algorithm for Wall Shear Stress Measurement: A Simulation and In Vitro Study

    Get PDF
    Cardiovascular pathology is the leading cause of death and disability in the Western world, and current diagnostic testing usually evaluates the anatomy of the vessel to determine if the vessel contains blockages and plaques. However, there is a growing school of thought that other measures, such as wall shear stress, provide more useful information for earlier diagnosis and prediction of atherosclerotic related disease compared to pulsed-wave Doppler ultrasound, magnetic resonance angiography, or computed tomography angiography. A novel algorithm for quantifying wall shear stress (WSS) in atherosclerotic plaque using diagnostic ultrasound imaging, called Multifrequency ultrafast Doppler spectral analysis (MFUDSA), is presented. The development of this algorithm is presented, in addition to its optimisation using simulation studies and in-vitro experiments with flow phantoms approximating the early stages of cardiovascular disease. The presented algorithm is compared with commonly used WSS assessment methods, such as standard PW Doppler, Ultrafast Doppler, and Parabolic Doppler, as well as plane-wave Doppler. Compared to an equivalent processing architecture with one-dimensional Fourier analysis, the MFUDSA algorithm provided an increase in signal-to-noise ratio (SNR) by a factor of 4–8 and an increase in velocity resolution by a factor of 1.10–1.35. The results indicated that MFUDSA outperformed the others, with significant differences detected between the typical WSS values of moderate disease progression (p = 0.003) and severe disease progression (p = 0.001). The algorithm demonstrated an improved performance for the assessment of WSS and has potential to provide an earlier diagnosis of cardiovascular disease than current techniques allow

    Review of ultrasound elastography quality control and training test phantoms

    Full text link
    While the rapid development of ultrasound elastography techniques in recent decades has sparked its prompt implementation in the clinical setting adding new diagnostic information to conventional imaging techniques, questions still remain as to its full potential and efficacy in the hospital environment. A limited number of technical studies have objectively assessed the full capabilities of the different elastography approaches, perhaps due, in part, to the scarcity of suitable tissue-mimicking materials and appropriately designed phantoms available. Few commercially-available elastography phantoms possess the necessary test target characteristics or mechanical properties observed clinically, or indeed reflect the lesion-to-background elasticity ratio encountered during clinical scanning. Thus, while some phantoms may prove useful, they may not fully challenge the capabilities of the different elastography technniques, proving limited when it comes to quality control (QC) and/or training purposes. Although a variety of elastography tissue-mimicking materials, such as agar and gelatine dispersions, co-polymer in oil and poly(vinyl) alcohol cryogel, have been developed for specific research purposes, such work has yet to produce appropriately designed phantoms to adequately challenge the variety of current commercially-available elastography applications. Accordingly, there is a clear need for the further development of elastography TMMs and phantoms to keep pace with the rapid developments in elastography technology, to ensure the performance of these new diagnostic approaches are validated, and for clinical training purposes

    Evaluation of CIRS string Doppler phantom as a test tool for use in a Doppler Ultrasound Quality Assurance program

    Full text link
    Ultrasound Doppler systems are routinely used to perform blood flow velocity measurements which assist in the clinical assessment and diagnosis of vascular. Doppler measurements of peak velocities for vascular applications provide an indication of the degree of the stenosis which will ultimately assist in deciding how a patient is managed. It is imperative that Doppler systems are capable of accurately measuring blood flow velocities to ensure correct diagnosis and appropriate patient treatment; therefore such systems should be evaluated regularly as part of a Quality Assurance program. Although a range of Doppler test phantoms have been developed for quality control (QC) purposes to establish the measurement accuracy and stability of Doppler systems only a limited number of such test phantoms are commercially available, the easiest of these devices to operate is the String Phantom. Currently, only one string Doppler phantom is commercially available, namely the CIRS Model 043. In this study an evaluation of the performance of this test device was carried out as a number of problems currently exist with it such as the filament type, the fact that the filament passes through a water–air interface and vibrations from the motor. This study has established that the braided-silk filament, provided with the phantom, should not be used as it introduces errors of as much as 24% for the mean velocity accuracy and 20% for the intrinsic spectral broadening (ISB) depending on the soak time of the filament. Rather, to avoid such errors it is advised that the phantom be retrofitted with a filament made from an O-ring rubber. While this eliminates the temporal changes in backscatter seen with the braided-silk filament, further discrepancies were observed, even with an O-ring filament, when the filament velocity was set in the range 26–44 cm/s, where a resonance effect significantly increased the variability of the maximum velocity accuracy and ISB measurements. This was most likely as a result of the imposed vibrations from the motor, which is mounted directly onto the tank wall; hence, it would prove practical to avoid taking measurements in this velocity range where resonance effects are observed

    Multimodal Breast Phantoms for Microwave, Ultrasound, Mammography, Magnetic Resonance and Computed Tomography Imaging

    Full text link
    The aim of this work was to develop multimodal anthropomorphic breast phantoms suitable for evaluating the imaging performance of a recently-introduced Microwave Imaging (MWI) technique in comparison to the established diagnostic imaging modalities of Magnetic Resonance Imaging (MRI), Ultrasound (US), mammography and Computed Tomography (CT). MWI is an emerging technique with significant potential to supplement established imaging techniques to improve diagnostic confidence for breast cancer detection. To date, numerical simulations have been used to assess the different MWI scanning and image reconstruction algorithms in current use, while only a few clinical trials have been conducted. To bridge the gap between the numerical simulation environment and a more realistic diagnostic scenario, anthropomorphic phantoms which mimic breast tissues in terms of their heterogeneity, anatomy, morphology, and mechanical and dielectric characteristics, may be used. Key in this regard is achieving realism in the imaging appearance of the different healthy and pathologic tissue types for each of the modalities, taking into consideration the differing imaging and contrast mechanisms for each modality. Suitable phantoms can thus be used by radiologists to correlate image findings between the emerging MWI technique and the more familiar images generated by the conventional modalities. Two phantoms were developed in this study, representing difficult-to-image and easy-to-image patients: the former contained a complex boundary between the mammary fat and fibroglandular tissues, extracted from real patient MRI datasets, while the latter contained a simpler and less morphologically accurate interface. Both phantoms were otherwise identical, with tissue-mimicking materials (TMMs) developed to mimic skin, subcutaneous fat, fibroglandular tissue, tumor and pectoral muscle. The phantoms’ construction used non-toxic materials, and they were inexpensive and relatively easy to manufacture. Both phantoms were scanned using conventional modalities (MRI, US, mammography and CT) and a recently introduced MWI radar detection procedure called in-coherent Multiple Signal Classification (I-MUSIC). Clinically realistic artifact-free images of the anthropomorphic breast phantoms were obtained using the conventional imaging techniques as well as the emerging technique of MWI
    corecore