30 research outputs found

    A Simple, Versatile and Sensitive Cell-Based Assay for Prions from Various Species

    Get PDF
    Detection and quantification of prion infectivity is a crucial step for various fundamental and applied aspects of prion research. Identification of cell lines highly sensitive to prion infection led to the development of cell-based titration procedures aiming at replacing animal bioassays, usually performed in mice or hamsters. However, most of these cell lines are only permissive to mouse-adapted prions strains and do not allow titration of prions from other species. In this study, we show that epithelial RK13, a cell line permissive to mouse and bank vole prion strains and to natural prion agents from sheep and cervids, enables a robust and sensitive detection of mouse and ovine-derived prions. Importantly, the cell culture work is strongly reduced as the RK13 cell assay procedure designed here does not require subcultivation of the inoculated cultures. We also show that prions effectively bind to culture plastic vessel and are quantitatively detected by the cell assay. The possibility to easily quantify a wider range of prions, including rodent experimental strains but also natural agents from sheep and cervids, should prompt the spread of cell assays for routine prion titration and lead to valuable information in fundamental and applied studies

    P2X7 receptor: Death or life?

    Get PDF
    The P2X7 plasma membrane receptor is an intriguing molecule that is endowed with the ability to kill cells, as well as to activate many responses and even stimulate proliferation. Here, the authors give an overview on the multiplicity and complexity of P2X7-mediated responses, discussing recent information on this receptor. Particular attention has been paid to early and late signs of apoptosis and necrosis linked to activation of the receptor and to the emerging field of P2X7 function in carcinogenesis

    Expression of Heterologous PrP and Prion Propagation in RK13 Cells

    No full text
    International audienc

    Pulling rabbits to reveal the secrets of the prion protein

    No full text
    The Prion protein (PrP) is a membrane-tethered glycoprotein that plays a central role in a unique class of neurodegenerative diseases that affect humans and other mammals. Prion diseases have genetic and sporadic origins, but their infectious nature sets them apart from other neurodegenerative disorders. According to the “protein-only” hypothesis, misfolded PrP conformers (prions) are responsible for both spongiform degeneration of the brain and disease transmissibility. Thus, understanding PrP conformational dynamics is key to developing effective therapies. Classic studies showing the different susceptibility to prion disease in mammals have recently found support in structural and transgenic studies with PrP from susceptible (mouse, hamster) and resistant (rabbit, horse, dog) animals. These studies identify key residues in PrP that determine both PrP structure and its propensity to acquire a β-structure conformation proposed to be neurotoxic
    corecore