7 research outputs found

    The Ag85B protein of the BCG vaccine facilitates macrophage uptake but is dispensable for protection against aerosol Mycobacterium tuberculosis infection.

    No full text
    Defining the function and protective capacity of mycobacterial antigens is crucial for progression of tuberculosis (TB) vaccine candidates to clinical trials. The Ag85B protein is expressed by all pathogenic mycobacteria and is a component of multiple TB vaccines under evaluation in humans. In this report we examined the role of the BCG Ag85B protein in host cell interaction and vaccine-induced protection against virulent Mycobacterium tuberculosis infection. Ag85B was required for macrophage infection in vitro, as BCG deficient in Ag85B expression (BCG:Delta85B) was less able to infect RAW 264.7 macrophages compared to parental BCG, while an Ag85B-overexpressing BCG strain (BCG:oex85B) demonstrated improved uptake. A similar pattern was observed in vivo after intradermal delivery to mice, with significantly less BCG:Delta85B present in CD64hiCD11bhi macrophages compared to BCG or BCG:oex85B. After vaccination of mice with BCG:Delta85B or parental BCG and subsequent aerosol M. tuberculosis challenge, similar numbers of activated CD4+ and CD8+ T cells were detected in the lungs of infected mice for both groups, suggesting the reduced macrophage uptake observed by BCG:Delta85B did not alter host immunity. Further, vaccination with both BCG:Delta85B and parental BCG resulted in a comparable reduction in pulmonary M. tuberculosis load. These data reveal an unappreciated role for Ag85B in the interaction of mycobacteria with host cells and indicates that single protective antigens are dispensable for protective immunity induced by BCG

    A composite fibrin-based scaffold for controlled delivery of bioactive pro-angiogenetic growth factors

    No full text
    The aim of this study was to fabricate and characterize in vitro a novel composite scaffold that, combining good mechanical properties with a controlled and sustained release of bioactive pro-angiogenetic growth factors, should be useful for angiogenesis induction in organs/tissues in which is also necessary to give resistance and mechanical strength. Composite scaffolds, constituted by a synthetic biocompatible material, a poly(ether)urethane-polydimethylsiloxane blend, and a biological polymer, the fibrin, were manufactured by spray, phase-inversion technique. During the manufacturing process heparin and heparin-binding growth factors, such as VEGF(165) and bFGF, were incorporated into the fibrin layer. Microscopical examinations showed a homogeneous fibrin layer firmly adherent on top of the synthetic material. Tensile tests highlighted the high elasticity of the composite scaffold and its capability to maintain integrity up to high deformation. VEGF(165) and bFGF release were controlled by fibrinogen concentration, whereas it was not affected by heparin concentration, as revealed by ELISA assay. The biological activity of the released growth factors was maintained as demonstrated by HUVEC proliferation. Finally, scaffolds induced a low monocyte mRNA expression of inflammatory markers (IL-8, L-SEL, LFA-1 and iNOS). In conclusion, the new composite scaffolds, once implanted, providing a co-localization and temporal distribution of bioactive VEGF and bFGF in addition to good mechanical properties, may be useful to stimulate new vessels formation in ischemic tissues

    Mucosal delivery of a multistage subunit vaccine promotes development of lung-resident memory T cells and affords interleukin-17-dependent protection against pulmonary tuberculosis

    No full text
    Abstract The development of effective vaccines against bacterial lung infections requires the induction of protective, pathogen-specific immune responses without deleterious inflammation within the pulmonary environment. Here, we made use of a polysaccharide-adjuvanted vaccine approach to elicit resident pulmonary T cells to protect against aerosol Mycobacterium tuberculosis infection. Intratracheal administration of the multistage fusion protein CysVac2 and the delta-inulin adjuvant Advax� (formulated with a TLR9 agonist) provided superior protection against aerosol M. tuberculosis infection in mice, compared to parenteral delivery. Surprisingly, removal of the TLR9 agonist did not impact vaccine protection despite a reduction in cytokine-secreting T cell subsets, particularly CD4 + IFN-? + IL-2 + TNF + multifunctional T cells. CysVac2/Advax-mediated protection was associated with the induction of lung-resident, antigen-specific memory CD4 + T cells that expressed IL-17 and ROR?T, the master transcriptional regulator of Th17 differentiation. IL-17 was identified as a key mediator of vaccine efficacy, with blocking of IL-17 during M. tuberculosis challenge reducing phagocyte influx, suppressing priming of pathogen-specific CD4 + T cells in local lymph nodes and ablating vaccine-induced protection. These findings suggest that tuberculosis vaccines such as CysVac2/Advax that are capable of eliciting Th17 lung-resident memory T cells are promising candidates for progression to human trials

    A single dose, BCG-adjuvanted COVID-19 vaccine provides sterilising immunity against SARS-CoV-2 infection.

    No full text
    Global control of COVID-19 requires broadly accessible vaccines that are effective against SARS-CoV-2 variants. In this report, we exploit the immunostimulatory properties of bacille Calmette-Guérin (BCG), the existing tuberculosis vaccine, to deliver a vaccination regimen with potent SARS-CoV-2-specific protective immunity. Combination of BCG with a stabilised, trimeric form of SARS-CoV-2 spike antigen promoted rapid development of virus-specific IgG antibodies in the blood of vaccinated mice, that was further augmented by the addition of alum. This vaccine formulation, BCG:CoVac, induced high-titre SARS-CoV-2 neutralising antibodies (NAbs) and Th1-biased cytokine release by vaccine-specific T cells, which correlated with the early emergence of T follicular helper cells in local lymph nodes and heightened levels of antigen-specific plasma B cells after vaccination. Vaccination of K18-hACE2 mice with a single dose of BCG:CoVac almost completely abrogated disease after SARS-CoV-2 challenge, with minimal inflammation and no detectable virus in the lungs of infected animals. Boosting BCG:CoVac-primed mice with a heterologous vaccine further increased SARS-CoV-2-specific antibody responses, which effectively neutralised B.1.1.7 and B.1.351 SARS-CoV-2 variants of concern. These findings demonstrate the potential for BCG-based vaccination to protect against major SARS-CoV-2 variants circulating globally

    Mucosal TLR2-activating protein-based vaccination induces potent pulmonary immunity and protection against SARS-CoV-2 in mice

    No full text
    Current vaccines against SARS-CoV-2 substantially reduce mortality, but protection against infection is less effective. Enhancing immunity in the respiratory tract, via mucosal vaccination, may provide protection against infection and minimise viral spread. We tested a novel subunit vaccine in mice, consisting of SARS-CoV-2 Spike protein with a TLR2-stimulating adjuvant, delivered to mice parenterally or mucosally. Both routes of vaccination induced substantial neutralising antibody (nAb) titres, however, mucosal vaccination uniquely generated anti-Spike IgA, increased nAb in the serum and airways, and increased lung CD4+ T-cell responses. TLR2 is expressed by respiratory epithelia and immune cells. Using TLR2 deficient chimeric mice, we determined that TLR2 expression in either compartment facilitated early innate responses to mucosal vaccination. By contrast, TLR2 on hematopoietic cells was essential for optimal lung-localised, antigen-specific responses. In a K18-hACE2 mice, vaccination provided complete protection against disease and sterilising lung immunity against SARS-CoV-2. These data support mucosal vaccination as a strategy to improve protection in the respiratory tract against SARS-CoV-2 and other respiratory viruses
    corecore