32 research outputs found
"To Destroy the Teacher": Whitman and Martin Farquhar Tupper\u27s 1851 Trip to America
Explores the possible influence of British author Martin Farquhar Tupper on the development of Whitman\u27s poetics, concluding that "while the differences between Whitman and Tupper clearly override the similarities, the similarities should not be ignored.
Let’s Stop Calling them “Slave Narratives”: Anagrammatical Blackness in our Academic Discourse
The label “slave narrative” is a damaging misnomer that leads to critical distortions and misrepresentations. These important texts were written by free men and women, not slaves, who had emancipated themselves from America’s slave system, and they function as testimonials of self-determination that document their escape from enslavement and help to enact their own freedom. The label slave narrative, which emerged in the late 1930s during the Federal Writers Project, exemplifies “anagrammatical blackness,” as theorized by Christina Sharpe. The term perpetuates a reductive framework that de-centers the writers’ accomplishments and sustains the afterlives of slavery
Awesome SOSS: Transmission Spectroscopy of WASP-96b with NIRISS/SOSS
The future is now - after its long-awaited launch in December 2021, JWST
began science operations in July 2022 and is already revolutionizing exoplanet
astronomy. The Early Release Observations (ERO) program was designed to provide
the first images and spectra from JWST, covering a multitude of science cases
and using multiple modes of each on-board instrument. Here, we present
transmission spectroscopy observations of the hot-Saturn WASP-96b with the
Single Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and
Slitless Spectrograph, observed as part of the ERO program. As the SOSS mode
presents some unique data reduction challenges, we provide an in-depth
walk-through of the major steps necessary for the reduction of SOSS data:
including background subtraction, correction of 1/f noise, and treatment of the
trace order overlap. We furthermore offer potential routes to correct for field
star contamination, which can occur due to the SOSS mode's slitless nature. By
comparing our extracted transmission spectrum with grids of atmosphere models,
we find an atmosphere metallicity between 1x and 5x solar, and a solar
carbon-to-oxygen ratio. Moreover, our models indicate that no grey cloud deck
is required to fit WASP-96b's transmission spectrum, but find evidence for a
slope shortward of 0.9m, which could either be caused by enhanced Rayleigh
scattering or the red wing of a pressure-broadened Na feature. Our work
demonstrates the unique capabilities of the SOSS mode for exoplanet
transmission spectroscopy and presents a step-by-step reduction guide for this
new and exciting instrument.Comment: MNRAS, in press. Updated to reflect published versio
A broadband thermal emission spectrum of the ultra-hot Jupiter WASP-18b
Close-in giant exoplanets with temperatures greater than 2,000 K (''ultra-hot
Jupiters'') have been the subject of extensive efforts to determine their
atmospheric properties using thermal emission measurements from the Hubble and
Spitzer Space Telescopes. However, previous studies have yielded inconsistent
results because the small sizes of the spectral features and the limited
information content of the data resulted in high sensitivity to the varying
assumptions made in the treatment of instrument systematics and the atmospheric
retrieval analysis. Here we present a dayside thermal emission spectrum of the
ultra-hot Jupiter WASP-18b obtained with the NIRISS instrument on JWST. The
data span 0.85 to 2.85 m in wavelength at an average resolving power of
400 and exhibit minimal systematics. The spectrum shows three water emission
features (at 6 confidence) and evidence for optical opacity,
possibly due to H, TiO, and VO (combined significance of 3.8).
Models that fit the data require a thermal inversion, molecular dissociation as
predicted by chemical equilibrium, a solar heavy element abundance
(''metallicity'', M/H = 1.03 solar), and a
carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside
brightness temperature map, which shows a peak in temperature near the
sub-stellar point that decreases steeply and symmetrically with longitude
toward the terminators.Comment: JWST ERS bright star observations. Uploaded to inform JWST Cycle 2
proposals. Manuscript under review. 50 pages, 14 figures, 2 table
Recommended from our members
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5 μm to 12 μm with the JWST’s Mid-Infrared Instrument. The spectra reveal a large day–night temperature contrast (with average brightness temperatures of 1,524 ± 35 K and 863 ± 23 K, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase-curve shape and emission spectra strongly suggest the presence of nightside clouds that become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1–6 ppm, depending on model assumptions). Our results provide strong evidence that the atmosphere of WASP-43b is shaped by disequilibrium processes and provide new insights into the properties of the planet’s nightside clouds. However, the remaining discrepancies between our observations and our predictive atmospheric models emphasize the importance of further exploring the effects of clouds and disequilibrium chemistry in numerical models.Peer reviewe
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5-12 μm with JWST's Mid-Infrared Instrument (MIRI). The spectra reveal a large day-night temperature contrast (with average brightness temperatures of 1524±35 and 863±23 Kelvin, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase curve shape and emission spectra strongly suggest the presence of nightside clouds which become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1-6 parts per million, depending on model assumptions)
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Hot Jupiters are among the best-studied exoplanets, but it is still poorly
understood how their chemical composition and cloud properties vary with
longitude. Theoretical models predict that clouds may condense on the nightside
and that molecular abundances can be driven out of equilibrium by zonal winds.
Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b
measured from 5-12 m with JWST's Mid-Infrared Instrument (MIRI). The
spectra reveal a large day-night temperature contrast (with average brightness
temperatures of 152435 and 86323 Kelvin, respectively) and evidence
for water absorption at all orbital phases. Comparisons with three-dimensional
atmospheric models show that both the phase curve shape and emission spectra
strongly suggest the presence of nightside clouds which become optically thick
to thermal emission at pressures greater than ~100 mbar. The dayside is
consistent with a cloudless atmosphere above the mid-infrared photosphere.
Contrary to expectations from equilibrium chemistry but consistent with
disequilibrium kinetics models, methane is not detected on the nightside
(2 upper limit of 1-6 parts per million, depending on model
assumptions).Comment: 61 pages, 13 figures, 4 tables. This preprint has been submitted to
and accepted in principle for publication in Nature Astronomy without
significant change
Early Release Science of the exoplanet WASP-39b with JWST NIRISS
Transmission spectroscopy provides insight into the atmospheric properties
and consequently the formation history, physics, and chemistry of transiting
exoplanets. However, obtaining precise inferences of atmospheric properties
from transmission spectra requires simultaneously measuring the strength and
shape of multiple spectral absorption features from a wide range of chemical
species. This has been challenging given the precision and wavelength coverage
of previous observatories. Here, we present the transmission spectrum of the
Saturn-mass exoplanet WASP-39b obtained using the SOSS mode of the NIRISS
instrument on the JWST. This spectrum spans m in wavelength and
reveals multiple water absorption bands, the potassium resonance doublet, as
well as signatures of clouds. The precision and broad wavelength coverage of
NIRISS-SOSS allows us to break model degeneracies between cloud properties and
the atmospheric composition of WASP-39b, favoring a heavy element enhancement
("metallicity") of the solar value, a sub-solar
carbon-to-oxygen (C/O) ratio, and a solar-to-super-solar potassium-to-oxygen
(K/O) ratio. The observations are best explained by wavelength-dependent,
non-gray clouds with inhomogeneous coverage of the planet's terminator.Comment: 48 pages, 12 figures, 2 tables. Under review at Natur
Identification of carbon dioxide in an exoplanet atmosphere
Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’), and thus the formation processes of the primary atmospheres of hot gas giants. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme. The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models
"To Destroy the Teacher": Whitman and Martin Farquhar Tupper's 1851 Trip to America
Explores the possible influence of British author Martin Farquhar Tupper on the development of Whitman\u27s poetics, concluding that "while the differences between Whitman and Tupper clearly override the similarities, the similarities should not be ignored.