105 research outputs found
Motivating developer performance to improve project outcomes in a high maturity organization
In this paper we discuss the impact software developer performance has on project outcomes. Project performance remains unreliable in the software industry with many compromised software systems reported in the press. We investigate the impact that developer performance has on aspects of project success and explore how developer performance is motivated. We present interview, focus group and questionnaire data collected from a team of developers working in a software organization that has been assessed at CMM level 5. Our main findings are that developers value technical skills in their colleagues, but appreciate these especially when supplemented with good human skills. Software developers with a proactive, flexible, adaptable approach who are prepared to share knowledge and follow good practice are said to be the best developers. Motivators for these developers are pay and benefits, recognition and opportunities for achievement in their work. Overall, we found that technical competence, interpersonal skills and adherence to good practices are thought to have the biggest impact on software project success.Peer reviewe
Modern In Vitro Techniques for Modeling Hearing Loss
Sensorineural hearing loss (SNHL) is a prevalent and growing global health concern, especially within operational medicine, with limited therapeutic options available. This review article explores the emerging field of in vitro otic organoids as a promising platform for modeling hearing loss and developing novel therapeutic strategies. SNHL primarily results from the irreversible loss or dysfunction of cochlear mechanosensory hair cells (HCs) and spiral ganglion neurons (SGNs), emphasizing the need for innovative solutions. Current interventions offer symptomatic relief but do not address the root causes. Otic organoids, three-dimensional multicellular constructs that mimic the inner ear’s architecture, have shown immense potential in several critical areas. They enable the testing of gene therapies, drug discovery for sensory cell regeneration, and the study of inner ear development and pathology. Unlike traditional animal models, otic organoids closely replicate human inner ear pathophysiology, making them invaluable for translational research. This review discusses methodological advances in otic organoid generation, emphasizing the use of human pluripotent stem cells (hPSCs) to replicate inner ear development. Cellular and molecular characterization efforts have identified key markers and pathways essential for otic organoid development, shedding light on their potential in modeling inner ear disorders. Technological innovations, such as 3D bioprinting and microfluidics, have further enhanced the fidelity of these models. Despite challenges and limitations, including the need for standardized protocols and ethical considerations, otic organoids offer a transformative approach to understanding and treating auditory dysfunctions. As this field matures, it holds the potential to revolutionize the treatment landscape for hearing and balance disorders, moving us closer to personalized medicine for inner ear conditions
- …