1,065 research outputs found

    A Superbubble Feedback Model for Galaxy Simulations

    Full text link
    We present a new stellar feedback model that reproduces superbubbles. Superbubbles from clustered young stars evolve quite differently to individual supernovae and are substantially more efficient at generating gas motions. The essential new components of the model are thermal conduction, sub-grid evaporation and a sub-grid multi-phase treatment for cases where the simulation mass resolution is insufficient to model the early stages of the superbubble. The multi-phase stage is short compared to superbubble lifetimes. Thermal conduction physically regulates the hot gas mass without requiring a free parameter. Accurately following the hot component naturally avoids overcooling. Prior approaches tend to heat too much mass, leaving the hot ISM below 10610^6 K and susceptible to rapid cooling unless ad-hoc fixes were used. The hot phase also allows feedback energy to correctly accumulate from multiple, clustered sources, including stellar winds and supernovae. We employ high-resolution simulations of a single star cluster to show the model is insensitive to numerical resolution, unresolved ISM structure and suppression of conduction by magnetic fields. We also simulate a Milky Way analog and a dwarf galaxy. Both galaxies show regulated star formation and produce strong outflows.Comment: 13 pages, 13 figures; replaced with version accepted to MNRA

    Simulation of primordial object formation

    Full text link
    We have included the chemical rate network responsible for the formation of molecular Hydrogen in the N-body hydrodynamic code, Hydra, in order to study the formation of the first cosmological at redshifts between 10 and 50. We have tested our implementation of the chemical and cooling processes by comparing N-body top hat simulations with theoretical predictions from a semi-analytic model and found them to be in good agreement. We find that post-virialization properties are insensitive to the initial abundance of molecular hydrogen. Our main objective was to determine the minimum mass (MSG(z)M_{SG}(z)) of perturbations that could become self gravitating (a prerequisite for star formation), and the redshift at which this occurred. We have developed a robust indicator for detecting the presence of a self-gravitating cloud in our simulations and find that we can do so with a baryonic particle mass-resolution of 40 solar masses. We have performed cosmological simulations of primordial objects and find that the object's mass and redshift at which they become self gravitating agree well with the MSG(z)M_{SG}(z) results from the top hat simulations. Once a critical molecular hydrogen fractional abundance of about 0.0005 has formed in an object, the cooling time drops below the dynamical time at the centre of the cloud and the gas free falls in the dark matter potential wells, becoming self gravitating a dynamical time later.Comment: 45 pages, 17 figures, submitted to Ap
    • …
    corecore