50 research outputs found

    Using trained dogs and organic semi-conducting sensors to identify asymptomatic and mild SARS-CoV-2 infections: an observational study

    Get PDF
    BACKGROUND: A rapid, accurate, non-invasive diagnostic screen is needed to identify people with SARS-CoV-2 infection. We investigated whether organic semi-conducting (OSC) sensors and trained dogs could distinguish between people infected with asymptomatic or mild symptoms, and uninfected individuals, and the impact of screening at ports-of-entry. METHODS: Odour samples were collected from adults, and SARS-CoV-2 infection status confirmed using RT-PCR. OSC sensors captured the volatile organic compound (VOC) profile of odour samples. Trained dogs were tested in a double-blind trial to determine their ability to detect differences in VOCs between infected and uninfected individuals, with sensitivity and specificity as the primary outcome. Mathematical modelling was used to investigate the impact of bio-detection dogs for screening. RESULTS: About, 3921 adults were enrolled in the study and odour samples collected from 1097 SARS-CoV-2 infected and 2031 uninfected individuals. OSC sensors were able to distinguish between SARS-CoV-2 infected individuals and uninfected, with sensitivity from 98% (95% CI 95–100) to 100% and specificity from 99% (95% CI 97–100) to 100%. Six dogs were able to distinguish between samples with sensitivity ranging from 82% (95% CI 76–87) to 94% (95% CI 89–98) and specificity ranging from 76% (95% CI 70–82) to 92% (95% CI 88–96). Mathematical modelling suggests that dog screening plus a confirmatory PCR test could detect up to 89% of SARS-CoV-2 infections, averting up to 2.2 times as much transmission compared to isolation of symptomatic individuals only. CONCLUSIONS: People infected with SARS-CoV-2, with asymptomatic or mild symptoms, have a distinct odour that can be identified by sensors and trained dogs with a high degree of accuracy. Odour-based diagnostics using sensors and/or dogs may prove a rapid and effective tool for screening large numbers of people. Trial Registration NCT04509713 (clinicaltrials.gov)

    Multi-Satellite MIMO Communications at Ku-Band and Above: Investigations on Spatial Multiplexing for Capacity Improvement and Selection Diversity for Interference Mitigation

    No full text
    This paper investigates the applicability of multiple-input multiple-output (MIMO) technology to satellite communications at the Ku-band and above. After introducing the possible diversity sources to form a MIMO matrix channel in a satellite environment, particular emphasis is put on satellite diversity. Two specific different topics from the field of MIMO technology applications to satellite communications at these frequencies are further analyzed: (i) capacity improvement achieved by MIMO spatial multiplexing systems and (ii) interference mitigation achieved by MIMO diversity systems employing receive antenna selection. In the first case, a single-user capacity analysis of a satellite MIMO spatial multiplexing system is presented and a useful analytical closed form expression is derived for the outage capacity achieved. In the second case, a satellite MIMO diversity system with receive antenna selection is considered, adjacent satellite cochannel interference on its forward link is studied and an analytical model predicting the interference mitigation achieved is presented. In both cases, an appropriate physical MIMO channel model is assumed which takes into account the propagation phenomena related to the frequencies of interest, such as clear line-of-sight operation, high antenna directivity, the effect of rain fading, and the slant path lengths difference. Useful numerical results obtained through the analytical expressions derived are presented to compare the performance of multi-satellite MIMO systems to relevant single-input single-output (SISO) ones.</p

    Calculation of eigenmodes in a nonperiodic corrugated waveguide

    No full text
    A theoretical technique for determining the dispersion relation, the electromagnetic field components, and the quality factor of a dielectric-loaded nonperiodic corrugated waveguide is presented for the case of azimuthally symmetric TM waves, The Floquet theorem is used to express the field distribution in the vacuum region, while an eigenfunction expansion is employed in each dielectric region, with the appropriate boundary conditions applied at the interfaces, leading to an infinite system of equations, This system is solved numerically by truncation, while the convergence of the solution is examined with the number of spatial harmonics, Based on this formulation, a numerical code, called FISHBONE-TM, is developed and its results are compared with those obtained with an established code (CASCADE) based on the scattering-matrix method
    corecore