11 research outputs found

    Astrophysical Reaction Rates for 10^{10}B(p,α\alpha)7^{7}Be and 11^{11}B(p,α\alpha)8^{8}Be From a Direct Model

    Full text link
    The reactions 10^{10}B(p,α\alpha)7^{7}Be and 11^{11}B(p,α\alpha)8^{8}Be are studied at thermonuclear energies using DWBA calculations. For both reactions, transitions to the ground states and first excited states are investigated. In the case of 10^{10}B(p,α\alpha)7^{7}Be, a resonance at ERes=10E_{Res}=10 keV can be consistently described in the potential model, thereby allowing the extension of the astrophysical SS-factor data to very low energies. Strong interference with a resonance at about ERes=550E_{Res}=550 keV require a Breit-Wigner description of that resonance and the introduction of an interference term for the reaction 10^{10}B(p,α1\alpha_1)7^{7}Be^*. Two isospin T=1T=1 resonances (at ERes1=149E_{Res1}=149 keV and ERes2=619E_{Res2}=619 keV) observed in the 11^{11}B+p reactions necessitate Breit-Wigner resonance and interference terms to fit the data of the 11^{11}B(p,α\alpha)8^{8}Be reaction. SS-factors and thermonuclear reaction rates are given for each reaction. The present calculation is the first consistent parametrization for the transition to the ground states and first excited states at low energies.Comment: 27 pages, 5 Postscript figures, uses RevTex and aps.sty; preprint also available at http://quasar.physik.unibas.ch/ Phys. Rev. C, in pres

    Microscopic approach to pion-nucleus dynamics

    Get PDF
    Elastic scattering of pions from finite nuclei is investigated utilizing a contemporary, momentum--space first--order optical potential combined with microscopic estimates of second--order corrections. The calculation of the first--order potential includes:\ \ (1)~full Fermi--averaging integration including both the delta propagation and the intrinsic nonlocalities in the π\pi-NN amplitude, (2)~fully covariant kinematics, (3)~use of invariant amplitudes which do not contain kinematic singularities, and (4)~a finite--range off--shell pion--nucleon model which contains the nucleon pole term. The effect of the delta--nucleus interaction is included via the mean spectral--energy approximation. It is demonstrated that this produces a convergent perturbation theory in which the Pauli corrections (here treated as a second--order term) cancel remarkably against the pion true absorption terms. Parameter--free results, including the delta--nucleus shell--model potential, Pauli corrections, pion true absorption, and short--range correlations are presented. (2 figures available from authors)Comment: 13 page

    Dependence of calculated binding energies and widths of η\eta-mesic nuclei on treatment of subthreshold η\eta-nucleon interaction

    Get PDF
    We demonstrate that the binding energies and widths of eta-mesic nuclei depend strongly on subthreshold eta-N interaction. This strong dependence is made evident from comparing three different eta-nucleus optical potentials: (1) a microscopic optical potential taking into account the full effects of off-shell eta-nucleon interactions; (2) a factorization approximation to the microscopic optical potential where a downward energy shift parameter is introduced to approximate the subthreshold eta-nucleon interaction; and (3) an optical potential using on-shell eta-nucleon scattering length as the interaction input. Our analysis indicates that the in-medium η\etaN interaction for bound-state formation is about 30 MeV below the free-space η\etaN threshold, which causes a substantial reduction of the attractive force between the η\eta and nucleon with respect to that implied by the scattering length. Consequently, the scattering-length approach overpredicts the binding energies and caution must be exercised when these latter predictions are used as guide in searching for η\eta-nucleus bound states. We also show that final-state-interaction analysis cannot provide an unequivocal determination of the existence of η\eta-nucleus bound state. More direct measurements are, therefore, necessary.Comment: 28 pages, 1 figur

    Nuclear pion photoproduction in the Delta resonance region

    No full text
    A measurement of the /sup 12/C( gamma , pi /sup +/n)/sup 11/B reaction in quasifree pi -production kinematic regimes has been performed using tagged photons in conjunction with large solid angle pi and n detectors. The aim of the experiment was to investigate predicted modifications to the Delta excitation of nucleons and their subsequent propagation and decay, brought about by the nuclear medium. Differential cross sections are presented for photon energies spanning the Delta (1232) excitation region. The measurements are consistent with distorted wave impulse approximation calculations in which the amplitude for proton Delta excitation, followed by Delta propagation and decay to pi /sup +/+n, is reduced compared to that for a free p. However, because of uncertainties in the magnitudes of the final state interactions, it is concluded that improved calculations are required to obtain a quantitative estimate of Delta - medium effects
    corecore