5 research outputs found

    The CriLiM Methodology: Crime Linkage with a Fuzzy MCDM Approach

    No full text
    Grouping events having similarities has always been interesting for analysts. Actually, when a label is put on top of a set of events to denote they share common properties, the automation and the capability to conduct reasoning with this set drastically increase. This is particularly true when considering criminal events for crime analysts, conjunction, interpretation and explanation can be key success factors to apprehend criminals. In this paper, we present the CriLiM methodology for investigating both serious and high-volume crime. Our artifact consists in implementing a tailored computerized crime linkage system, based on a fuzzy MCDM approach in order to combine spatio-temporal, behavioral, and forensic information. As a proof of concept, series in burglaries are examined from real data and compared to expert results

    Modeling and Mining the Rule Evolution

    No full text
    corecore