12 research outputs found

    Expression and function of dipeptidyl-aminopeptidase-like protein 6 (DPPX) as a putative b-subunit of human cardiac transient outward current encoded by Kv4.3

    No full text
    Dipeptidyl-aminopeptidase-like protein 6 (DPPX) was recently shown in the brain to modulate the kinetics of transient A-type currents by accelerating inactivation and recovery from inactivation. Since the kinetics of human cardiac transient outward current (I(to)) are not mimicked by coexpression of the alpha-subunit Kv4.3 with its known beta-subunit KChIP2, we have tested the hypothesis that DPPX may serve as an additional beta-subunit in the human heart. With quantitative real-time RT-PCR strong mRNA expression of DPPX was detected in human ventricles and was verified at the protein level in human but not in rat heart by a DPPX-specific antibody. Co-expression of DPPX with Kv4.3 in Chinese hamster ovary cells produced I(to)-like currents, but compared with expression of KChIP2a and Kv4.3, the time constant of inactivation was faster, the potential of half-maximum steady-state inactivation was more negative and recovery from inactivation was delayed. Co-expression of DPPX in addition to Kv4.3 and KChIP2a produced similar current kinetics as in human ventricular myocytes. We therefore propose that DPPX is an essential component of the native cardiac I(to) channel complex in human heart

    Functional modulation of the transient outward current Ito by KCNE b-subunits and regional distribution in human non-failing and failing hearts

    No full text
    OBJECTIVES: The function of Kv4.3 (KCND3) channels, which underlie the transient outward current I(to) in human heart, can be modulated by several accessory subunits such as KChIP2 and KCNE1-KCNE5. Here we aimed to determine the regional expression of Kv4.3, KChIP2, and KCNE mRNAs in non-failing and failing human hearts and to investigate the functional consequences of subunit coexpression in heterologous expression systems. METHODS: We quantified mRNA levels for two Kv4.3 isoforms, Kv4.3-S and Kv4.3-L, and for KChIP2 as well as KCNE1-KCNE5 with real-time RT-PCR. We also studied the effects of KCNEs on Kv4.3+KChIP2 current characteristics in CHO cells with the whole-cell voltage-clamp method. RESULTS: In non-failing hearts, low expression was found for KCNE1, KCNE3, and KCNE5, three times higher expression for KCNE2, and 60 times higher for KCNE4. Transmural gradients were detected only for KChIP2 in left and right ventricles. Compared to non-failing tissue, failing hearts showed higher expression of Kv4.3-L and KCNE1 and lower of Kv4.3-S, KChIP2, KCNE4, and KCNE5. In CHO cells, Kv4.3+KChIP2 currents were differentially modified by co-expressed KCNEs: time constants of inactivation were shorter with KCNE1 and KCNE3-5 while time-to-peak was decreased, and V(0.5) of steady-state inactivation was shifted to more negative potentials by all KCNE subunits. Importantly, KCNE2 induced a unique and prominent 'overshoot' of peak current during recovery from inactivation similar to that described for human I(to) while other KCNE subunits induced little (KCNE4,5) or no overshoot. CONCLUSIONS: All KCNEs are expressed in the human heart at the transcript level. Compared to I(to) in native human myocytes, none of the combination of KChIP2 and KCNE produced an ideal congruency in current characteristics, suggesting that additional factors contribute to the regulation of the native I(to) channel

    Modulation of early stress-induced neurobiological changes: a review of behavioural and pharmacological interventions in animal models

    No full text

    Counter Electrode Materials for Organic-Inorganic Perovskite Solar Cells

    No full text

    Scalable fabrication of perovskite solar cells

    No full text

    What can we learn about stroke from retinal ischemia models?

    No full text
    corecore