2 research outputs found

    Old genes in new places: A taxon-rich analysis of interdomain lateral gene transfer events.

    Get PDF
    Vertical inheritance is foundational to Darwinian evolution, but fails to explain major innovations such as the rapid spread of antibiotic resistance among bacteria and the origin of photosynthesis in eukaryotes. While lateral gene transfer (LGT) is recognized as an evolutionary force in prokaryotes, the role of LGT in eukaryotic evolution is less clear. With the exception of the transfer of genes from organelles to the nucleus, a process termed endosymbiotic gene transfer (EGT), the extent of interdomain transfer from prokaryotes to eukaryotes is highly debated. A common critique of studies of interdomain LGT is the reliance on the topology of single-gene trees that attempt to estimate more than one billion years of evolution. We take a more conservative approach by identifying cases in which a single clade of eukaryotes is found in an otherwise prokaryotic gene tree (i.e. exclusive presence). Starting with a taxon-rich dataset of over 13,600 gene families and passing data through several rounds of curation, we identify and categorize the function of 306 interdomain LGT events into diverse eukaryotes, including 189 putative EGTs, 52 LGTs into Opisthokonta (i.e. animals, fungi and their microbial relatives), and 42 LGTs nearly exclusive to anaerobic eukaryotes. To assess differential gene loss as an explanation for exclusive presence, we compare branch lengths within each LGT tree to a set of vertically-inherited genes subsampled to mimic gene loss (i.e. with the same taxonomic sampling) and consistently find shorter relative distance between eukaryotes and prokaryotes in LGT trees, a pattern inconsistent with gene loss. Our methods provide a framework for future studies of interdomain LGT and move the field closer to an understanding of how best to model the evolutionary history of eukaryotes

    Somatic genome architecture and molecular evolution are decoupled in "young" linage-specific gene families in ciliates.

    Get PDF
    The evolution of lineage-specific gene families remains poorly studied across the eukaryotic tree of life, with most analyses focusing on the recent evolution of de novo genes in model species. Here we explore the origins of lineage-specific genes in ciliates, a ~1 billion year old clade of microeukaryotes that are defined by their division of somatic and germline functions into distinct nuclei. Previous analyses on conserved gene families have shown the effect of ciliates' unusual genome architecture on gene family evolution: extensive genome processing-the generation of thousands of gene-sized somatic chromosomes from canonical germline chromosomes-is associated with larger and more diverse gene families. To further study the relationship between ciliate genome architecture and gene family evolution, we analyzed lineage specific gene families from a set of 46 transcriptomes and 12 genomes representing x species from eight ciliate classes. We assess how the evolution lineage-specific gene families occurs among four groups of ciliates: extensive fragmenters with gene-size somatic chromosomes, non-extensive fragmenters with "large'' multi-gene somatic chromosomes, Heterotrichea with highly polyploid somatic genomes and Karyorelictea with 'paradiploid' somatic genomes. Our analyses demonstrate that: 1) most lineage-specific gene families are found at shallow taxonomic scales; 2) extensive genome processing (i.e., gene unscrambling) during development likely influences the size and number of young lineage-specific gene families; and 3) the influence of somatic genome architecture on molecular evolution is increasingly apparent in older gene families. Altogether, these data highlight the influences of genome architecture on the evolution of lineage-specific gene families in eukaryotes
    corecore