6 research outputs found
Methods to study microbial adhesion on abiotic surfaces
Microbial biofilms are a matrix of cells and exopolymeric substances attached to a wet and solid surface and are commonly associated to several problems, such as biofouling and corrosion in industries and infectious diseases in urinary catheters and prosthesis. However, these cells may have several benefits in distinct applications, such as wastewater treatment processes, microbial fuel cells for energy production and biosensors. As microbial adhesion is a key step on biofilm formation, it is very important to understand and characterize microbial adhesion to a surface. This study presents an overview of predictive and experimental methods used for the study of bacterial adhesion. Evaluation of surface physicochemical properties have a limited capacity in describing the complex adhesion process. Regarding the experimental methods, there is no standard method or platform available for the study of microbial adhesion and a wide variety of methods, such as colony forming units counting and microscopy techniques, can be applied for quantification and characterization of the adhesion process.This work was financially supported by: Project UID/EQU/00511/2013-LEPABE, by the FCT/MEC with national funds and co-funded by FEDER in the scope of the P2020 Partnership Agreement; Project NORTE-07-0124-FEDER-000025 - RL2_Environment&Health, by FEDER funds through Programa Operacional Factores de Competitividade-COMPETE, by the Programa Operacional do Norte (ON2) program and by national funds through FCT - Fundacao para a Ciencia e a Tecnologia; European Research Project SusClean (Contract number FP7-KBBE-2011-5, project number: 287514), Scholarships SFRH/BD/52624/2014, SFRH/BD/88799/2012 and SFRH/BD/103810/2014
Surface modification of materials to encourage beneficial biofilm formation
Biofilms are communities of sessile microorganisms that grow and produce extrapolymeric substances on an abiotic or biotic surface. Although biofilms are often associated with negative impacts, the role of beneficial biofilms is wide and include applications in bioremediation, wastewater treatment and microbial fuel cells. Microbial adhesion to a surface, which is highly dependent on the physicochemical properties of the cells and surfaces, is an essential step in biofilm formation. Surface modification therefore represents an important way to modulate microbial attachment and ultimately biofilm formation by microorganisms. In this review different surface modification processes such as organosilane surface modification, plasma treatment, and chemical modification of carbon nanotubes, electro-oxidation and covalent-immobilization with neutral red and methylene blue molecules are outlined. The effectiveness of these modifications and their industrial applications are also discussed. There is inadequate literature on surface modification as a process to enhance beneficial biofilm formation. These methods need to be safe, economically viable, scalable and environmental friendly and their potential to fulfil these criteria for many applications has yet to be determined