672 research outputs found
Fast-swimming hydromedusae exploit velar kinematics to form an optimal vortex wake
Fast-swimming hydromedusan jellyfish possess a characteristic funnel-shaped velum at the exit of their oral cavity that interacts with the pulsed jets of water ejected during swimming motions. It has been previously assumed that the velum primarily serves to augment swimming thrust by constricting the ejected flow in order to produce higher jet velocities. This paper presents high-speed video and dye-flow visualizations of free-swimming Nemopsis bachei hydromedusae, which instead indicate that the time-dependent velar kinematics observed during the swimming cycle primarily serve to optimize vortices formed by the ejected water rather than to affect the speed of the ejected flow. Optimal vortex formation is favorable in fast-swimming jellyfish because, unlike the jet funnelling mechanism, it allows for the minimization of energy costs while maximizing thrust forces. However, the vortex `formation number' corresponding to optimality in N. bachei is substantially greater than the value of 4 found in previous engineering studies of pulsed jets from rigid tubes. The increased optimal vortex formation number is attributable to the transient velar kinematics exhibited by the animals. A recently developed model for instantaneous forces generated during swimming motions is implemented to demonstrate that transient velar kinematics are required in order to achieve the measured swimming trajectories. The presence of velar structures in fast-swimming jellyfish and the occurrence of similar jet-regulating mechanisms in other jet-propelled swimmers (e.g. the funnel of squid) appear to be a primary factor contributing to success of fast-swimming jetters, despite their primitive body plans
Morphological diversity of medusan lineages constrained by animal–fluid interactions
Cnidarian medusae, commonly known as jellyfish, represent the earliest known animal taxa to achieve locomotion using muscle power. Propulsion by medusae requires the force of bell contraction to generate forward thrust. However, thrust production is limited in medusae by the primitive structure of their epitheliomuscular cells. This paper demonstrates that constraints in available locomotor muscular force result in a trade-off between high-thrust swimming via jet propulsion and high-efficiency swimming via a combined jet-paddling propulsion. This trade-off is reflected in the morphological diversity of medusae, which exhibit a range of fineness ratios (i.e. the ratio between bell height and diameter) and small body size in the high-thrust regime, and low fineness ratios and large body size in the high-efficiency regime. A quantitative model of the animal–fluid interactions that dictate this trade-off is developed and validated by comparison with morphological data collected from 660 extant medusan species ranging in size from 300 µm to over 2 m. These results demonstrate a biomechanical basis linking fluid dynamics and the evolution of medusan bell morphology. We believe these to be the organising principles for muscle-driven motility in Cnidaria
Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses
Flow patterns generated by medusan swimmers such as
jellyfish are known to differ according the morphology of
the various animal species. Oblate medusae have been
previously observed to generate vortex ring structures
during the propulsive cycle. Owing to the inherent
physical coupling between locomotor and feeding
structures in these animals, the dynamics of vortex ring
formation must be robustly tuned to facilitate effective
functioning of both systems. To understand how this is
achieved, we employed dye visualization techniques on
scyphomedusae (Aurelia aurita) observed swimming in
their natural marine habitat. The flow created during each
propulsive cycle consists of a toroidal starting vortex
formed during the power swimming stroke, followed by a
stopping vortex of opposite rotational sense generated
during the recovery stroke. These two vortices merge in a
laterally oriented vortex superstructure that induces flow
both toward the subumbrellar feeding surfaces and
downstream. The lateral vortex motif discovered here
appears to be critical to the dual function of the medusa
bell as a flow source for feeding and propulsion.
Furthermore, vortices in the animal wake have a greater
volume and closer spacing than predicted by prevailing
models of medusan swimming. These effects are shown to
be advantageous for feeding and swimming performance,
and are an important consequence of vortex interactions
that have been previously neglected
Tracking ground state Ba+ ions in an expanding laser–plasma plume using time-resolved vacuum ultraviolet photoionization imaging
We report results from a study of the integrated column density and expansion dynamics of ground-state-selected Ba+ ions in a laser–plasma plume using a new experimental system—VPIF (vacuum-ultraviolet photoabsorption imaging facility). The ions are tracked by recording the attenuation of a pulsed and collimated vacuum ultraviolet beam, tuned to the 5p–6d inner-shell resonance of singly ionized barium, as the expanding plasma plume moves across it. The attenuated beam is allowed to fall on a CCD array where the spatial distribution of the absorption is recorded. Time-resolved ion velocity and integrated column density maps are readily extracted from the photoionization images
Quantitatively Measuring In situ Flows using a Self-Contained Underwater Velocimetry Apparatus (SCUVA)
The ability to directly measure velocity fields in a fluid environment is necessary to provide empirical data for studies in fields as diverse as oceanography, ecology, biology, and fluid mechanics. Field measurements introduce practical challenges such as environmental conditions, animal availability, and the need for field-compatible measurement techniques. To avoid these challenges, scientists typically use controlled laboratory environments to study animal-fluid interactions. However, it is reasonable to question whether one can extrapolate natural behavior (i.e., that which occurs in the field) from laboratory measurements. Therefore, in situ quantitative flow measurements are needed to accurately describe animal swimming in their natural environment
An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements
We describe and characterize a method for estimating the pressure
field corresponding to velocity field measurements such as those
obtained by using particle image velocimetry. The pressure gradient
is estimated from a time series of velocity fields for unsteady calculations or from a single velocity field for quasi-steady calculations. The corresponding pressure field is determined based
on median polling of several integration paths through the pressure
gradient field in order to reduce the effect of measurement errors that accumulate along individual integration paths. Integration paths are restricted to the nodes of the measured velocity field, thereby
eliminating the need for measurement interpolation during this step
and significantly reducing the computational cost of the algorithm
relative to previous approaches. The method is validated by using
numerically simulated flow past a stationary, two-dimensional bluff
body and a computational model of a three-dimensional, self-propelled anguilliform swimmer to study the effects of spatial and
temporal resolution, domain size, signal-to-noise ratio and out-of-plane effects. Particle image velocimetry measurements of a freely
swimming jellyfish medusa and a freely swimming lamprey are
analyzed using the method to demonstrate the efficacy of the
approach when applied to empirical data
Recent Decisions
Comments on recent decisions by Frank P. Maggio, Paul Driscoll, Richard H. Puckett, John F. Costello, Harold E. McKee, and Edmund John Adams
Prey capture by the cosmopolitan hydromedusae, Obelia spp., in the viscous regime
Author Posting. © Association for the Sciences of Limnology and Oceanography, 2016. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 61 (2016): 2309–2317, doi:10.1002/lno.10390.Obelia spp. are cnidarian hydromedusae with a cosmopolitan distribution but very little is known about their feeding. The small size of Obelia (bell diameter ∼ 1 mm, tentacle width ∼ 0.05 mm) suggests that feeding occurs in a viscous regime characterized by thick boundary layers. During feeding observations with a natural prey assemblage the majority of prey were captured at the tentacle tips during the contraction phase. Swimming kinematics from high speed videography confirmed that swimming was a low Re number process (Re < 50) and showed that maximum tentacle velocities occurred at the tentacle tips midway through a bell contraction. Flow visualizations from particle image velocimetry demonstrated that fluid motion between the tentacles was limited and that velocities were highest at the tentacle tips, leading to a thinning of boundary layer in this region. The highest nematocyst densities were observed in this same region of the tentacle tips. Taken together, the body kinematics, flow visualizations and nematocyst distributions of Obelia explain how these predators are able to shed viscous boundary layers to effectively capture microplanktonic prey. Our findings help explain how other small feeding-current medusae whose feeding interactions are governed by viscosity are able to successfully forage.National Science Foundation Grant Numbers: OCE- 1155084, DBI- 1455471, OCE- 1536672, OCE- 153668
Field testing of biohybrid robotic jellyfish to demonstrate enhanced swimming speeds
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Xu, N. W., Townsend, J. P., Costello, J. H., Colin, S. P., Gemmell, B. J., & Dabiri, J. O. Field testing of biohybrid robotic jellyfish to demonstrate enhanced swimming speeds. Biomimetics, 5(4), (2020): E64, doi:10.3390/biomimetics5040064.Biohybrid robotic designs incorporating live animals and self-contained microelectronic systems can leverage the animals’ own metabolism to reduce power constraints and act as natural chassis and actuators with damage tolerance. Previous work established that biohybrid robotic jellyfish can exhibit enhanced speeds up to 2.8 times their baseline behavior in laboratory environments. However, it remains unknown if the results could be applied in natural, dynamic ocean environments and what factors can contribute to large animal variability. Deploying this system in the coastal waters of Massachusetts, we validate and extend prior laboratory work by demonstrating increases in jellyfish swimming speeds up to 2.3 times greater than their baseline, with absolute swimming speeds up to 6.6 ± 0.3 cm s−1. These experimental swimming speeds are predicted using a hydrodynamic model with morphological and time-dependent input parameters obtained from field experiment videos. The theoretical model can provide a basis to choose specific jellyfish with desirable traits to maximize enhancements from robotic manipulation. With future work to increase maneuverability and incorporate sensors, biohybrid robotic jellyfish can potentially be used to track environmental changes in applications for ocean monitoring.This work was supported by the National Science Foundation (NSF) Graduate Research Fellowship Program (GRFP) awarded to N.W.X
Maneuvering performance in the colonial siphonophore, Nanomia bijuga
© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sutherland, K. R., Gemmell, B. J., Colin, S. P., & Costello, J. H. Maneuvering performance in the colonial siphonophore, Nanomia bijuga. Biomimetics, 4(3), (2019): 62, doi:10.3390/biomimetics4030062.The colonial cnidarian, Nanomia bijuga, is highly proficient at moving in three-dimensional space through forward swimming, reverse swimming and turning. We used high speed videography, particle tracking, and particle image velocimetry (PIV) with frame rates up to 6400 s−1 to study the kinematics and fluid mechanics of N. bijuga during turning and reversing. N. bijuga achieved turns with high maneuverability (mean length–specific turning radius, R/L = 0.15 ± 0.10) and agility (mean angular velocity, ω = 104 ± 41 deg. s−1). The maximum angular velocity of N. bijuga, 215 deg. s−1, exceeded that of many vertebrates with more complex body forms and neurocircuitry. Through the combination of rapid nectophore contraction and velum modulation, N. bijuga generated high speed, narrow jets (maximum = 1063 ± 176 mm s−1; 295 nectophore lengths s−1) and thrust vectoring, which enabled high speed reverse swimming (maximum = 134 ± 28 mm s−1; 37 nectophore lengths s−1) that matched previously reported forward swimming speeds. A 1:1 ratio of forward to reverse swimming speed has not been recorded in other swimming organisms. Taken together, the colonial architecture, simple neurocircuitry, and tightly controlled pulsed jets by N. bijuga allow for a diverse repertoire of movements. Considering the further advantages of scalability and redundancy in colonies, N. bijuga is a model system for informing underwater propulsion and navigation of complex environments.This research was funded by the National Science Foundation (NSF) 1829932 and 173764 to K.R.S., NSF 1830015, 1536672, 1511721 to J.H.C., 1455440, 1536688, 1829913 to S.P.C., NSF 1511996 to B.J.G
- …