11 research outputs found
The W_N minimal model classification
We first rigourously establish, for any N, that the toroidal modular
invariant partition functions for the (not necessarily unitary) W_N(p,q)
minimal models biject onto a well-defined subset of those of the SU(N)xSU(N)
Wess-Zumino-Witten theories at level (p-N,q-N). This permits considerable
simplifications to the proof of the Cappelli-Itzykson-Zuber classification of
Virasoro minimal models. More important, we obtain from this the complete
classification of all modular invariants for the W_3(p,q) minimal models. All
should be realised by rational conformal field theories. Previously, only those
for the unitary models, i.e. W_3(p,p+1), were classified. For all N our
correspondence yields for free an extensive list of W_N(p,q) modular
invariants. The W_3 modular invariants, like the Virasoro minimal models, all
factorise into SU(3) modular invariants, but this fails in general for larger
N. We also classify the SU(3)xSU(3) modular invariants, and find there a new
infinite series of exceptionals.Comment: 25 page
Symmetries of the Kac-Peterson Modular Matrices of Affine Algebras
The characters of nontwisted affine algebras at fixed level define
in a natural way a representation of the modular group . The
matrices in the image are called the Kac-Peterson modular
matrices, and describe the modular behaviour of the characters. In this paper
we consider all levels of , and for
each of these find all permutations of the highest weights which commute with
the corresponding Kac-Peterson matrices. This problem is equivalent to the
classification of automorphism invariants of conformal field theories, and its
solution, especially considering its simplicity, is a major step toward the
classification of all Wess-Zumino-Witten conformal field theories.Comment: 16 pp, plain te
Automorphism Modular Invariants of Current Algebras
We consider those two-dimensional rational conformal field theories (RCFTs)
whose chiral algebras, when maximally extended, are isomorphic to the current
algebra formed from some affine non-twisted Kac--Moody algebra at fixed level.
In this case the partition function is specified by an automorphism of the
fusion ring and corresponding symmetry of the Kac--Peterson modular matrices.
We classify all such partition functions when the underlying finite-dimensional
Lie algebra is simple. This gives all possible spectra for this class of RCFTs.
While accomplishing this, we also find the primary fields with second smallest
quantum dimension.Comment: 32 pages, plain Te
Modular differential equations for torus one-point functions
It is shown that in a rational conformal field theory every torus one-point
function of a given highest weight state satisfies a modular differential
equation. We derive and solve these differential equations explicitly for some
Virasoro minimal models. In general, however, the resulting amplitudes do not
seem to be expressible in terms of standard transcendental functions.Comment: 19 pages, LaTeX; reference adde
On the complete classification of the unitary N=2 minimal superconformal field theories
Aiming at a complete classification of unitary N=2 minimal models (where the
assumption of space-time supersymmetry has been dropped), it is shown that each
modular invariant candidate of a partition function for such a theory is indeed
the partition function of a minimal model. A family of models constructed via
orbifoldings of either the diagonal model or of the space-time supersymmetric
exceptional models demonstrates that there exists a unitary N=2 minimal model
for every one of the allowed partition functions in the list obtained from
Gannon's work.
Kreuzer and Schellekens' conjecture that all simple current invariants can be
obtained as orbifolds of the diagonal model, even when the extra assumption of
higher-genus modular invariance is dropped, is confirmed in the case of the
unitary N=2 minimal models by simple counting arguments.Comment: 53 pages; Latex; minor changes in v2: intro expanded, references
added, typos corrected, footnote added on p31; renumbering of sections; main
theorem reformulated for clarity, but contents unchanged. Minor revisions in
v3: typos corrected, footnotes 5, 6 added, lemma 1 and section 3.3.2
rewritten for greater generality, section 3.3 review removed. To appear in
Comm. Math. Phy