1,754 research outputs found

    Red-Shifted Firefly Luciferase Optimized for Candida albicans In vivo Bioluminescence Imaging.

    Get PDF
    Candida albicans is a major fungal pathogen causing life-threatening diseases in immuno-compromised patients. The efficacy of current drugs to combat C. albicans infections is limited, as these infections have a 40-60% mortality rate. There is a real need for novel therapeutic approaches, but such advances require a detailed knowledge of C. albicans and its in vivo pathogenesis. Additionally, any novel antifungal drugs against C. albicans infections will need to be tested for their in vivo efficacy over time. Fungal pathogenesis and drug-mediated resolution studies can both be evaluated using non-invasive in vivo imaging technologies. In the work presented here, we used a codon-optimized firefly luciferase reporter system for detecting C. albicans in mice. We adapted the firefly luciferase in order to improve its maximum emission intensity in the red light range (600-700 nm) as well as to improve its thermostability in mice. All non-invasive in vivo imaging of experimental animals was performed with a multimodal imaging system able to detect luminescent reporters and capture both reflectance and X-ray images. The modified firefly luciferase expressed in C. albicans (Mut2) was found to significantly increase the sensitivity of bioluminescence imaging (BLI) in systemic infections as compared to unmodified luciferase (Mut0). The same modified bioluminescence reporter system was used in an oropharyngeal candidiasis model. In both animal models, fungal loads could be correlated to the intensity of emitted light. Antifungal treatment efficacies were also evaluated on the basis of BLI signal intensity. In conclusion, BLI with a red-shifted firefly luciferase was found to be a powerful tool for testing the fate of C. albicans in various mice infection models

    Resonant Magnetic Vortices

    Full text link
    By using the complex angular momentum method, we provide a semiclassical analysis of electron scattering by a magnetic vortex of Aharonov-Bohm-type. Regge poles of the SS-matrix are associated with surface waves orbiting around the vortex and supported by a magnetic field discontinuity. Rapid variations of sharp characteristic shapes can be observed on scattering cross sections. They correspond to quasibound states which are Breit-Wigner-type resonances associated with surface waves and which can be considered as quantum analogues of acoustic whispering-gallery modes. Such a resonant magnetic vortex could provide a new kind of artificial atom while the semiclassical approach developed here could be profitably extended in various areas of the physics of vortices.Comment: 6 pages, 7 figure

    Spatial Mixing and Non-local Markov chains

    Full text link
    We consider spin systems with nearest-neighbor interactions on an nn-vertex dd-dimensional cube of the integer lattice graph Zd\mathbb{Z}^d. We study the effects that exponential decay with distance of spin correlations, specifically the strong spatial mixing condition (SSM), has on the rate of convergence to equilibrium distribution of non-local Markov chains. We prove that SSM implies O(logn)O(\log n) mixing of a block dynamics whose steps can be implemented efficiently. We then develop a methodology, consisting of several new comparison inequalities concerning various block dynamics, that allow us to extend this result to other non-local dynamics. As a first application of our method we prove that, if SSM holds, then the relaxation time (i.e., the inverse spectral gap) of general block dynamics is O(r)O(r), where rr is the number of blocks. A second application of our technology concerns the Swendsen-Wang dynamics for the ferromagnetic Ising and Potts models. We show that SSM implies an O(1)O(1) bound for the relaxation time. As a by-product of this implication we observe that the relaxation time of the Swendsen-Wang dynamics in square boxes of Z2\mathbb{Z}^2 is O(1)O(1) throughout the subcritical regime of the qq-state Potts model, for all q2q \ge 2. We also prove that for monotone spin systems SSM implies that the mixing time of systematic scan dynamics is O(logn(loglogn)2)O(\log n (\log \log n)^2). Systematic scan dynamics are widely employed in practice but have proved hard to analyze. Our proofs use a variety of techniques for the analysis of Markov chains including coupling, functional analysis and linear algebra

    How Yeast Antifungal Resistance Gene Analysis Is Essential to Validate Antifungal Susceptibility Testing Systems.

    Get PDF
    The antifungal susceptibility testing (AFST) of yeast pathogen alerts clinicians about the potential emergence of resistance. In this study, we compared two commercial microdilution AFST methods: Sensititre YeastOne read visually (YO) and MICRONAUT-AM read visually (MN) or spectrophotometrically (MNV), interpreted with Clinical and Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing criteria, respectively. Overall, 97 strains from 19 yeast species were measured for nine antifungal drugs including a total of 873 observations. First, the minimal inhibitory concentration (MIC) was compared between YO and MNV, and between MNV and MN, either directly or by assigning them to five susceptibility categories. Those categories were based on the number of MIC dilutions around the breakpoint or epidemiological cut-off reference values (ECOFFs or ECVs). Second, YO and MNV methods were evaluated for their ability to detect the elevation of MICs due to mutation in antifungal resistance genes, thanks to pairs or triplets of isogenic strains isolated from a single patient along a treatment previously analyzed for antifungal resistance gene mutations. Reproducibility measurement was evaluated, thanks to three quality control (QC) strains. YO and MNV direct MIC comparisons obtained a global agreement of 67%. Performing susceptibility category comparisons, only 22% and 49% of the MICs could be assigned to categories using breakpoints and ECOFFs/ECVs, respectively, and 40% could not be assigned due to the lack of criteria in both consortia. The YO and MN susceptibility categories gave accuracies as low as 50%, revealing the difficulty to implement this method of comparison. In contrast, using the antifungal resistance gene sequences as a gold standard, we demonstrated that both methods (YO and MN) were equally able to detect the acquisition of resistance in the Candida strains, even if MN showed a global lower MIC elevation than YO. Finally, no major differences in reproducibility were observed between the three AFST methods. This study demonstrates the valuable use of both commercial microdilution AFST methods to detect antifungal resistance due to point mutations in antifungal resistance genes. We highlighted the difficulty to conduct conclusive analyses without antifungal gene sequence data as a gold standard. Indeed, MIC comparisons taking into account the consortia criteria of interpretation remain difficult even after the effort of harmonization

    Heat Kernel Bounds for the Laplacian on Metric Graphs of Polygonal Tilings

    Full text link
    We obtain an upper heat kernel bound for the Laplacian on metric graphs arising as one skeletons of certain polygonal tilings of the plane, which reflects the one dimensional as well as the two dimensional nature of these graphs.Comment: 8 page

    Adiabatic times for Markov chains and applications

    Full text link
    We state and prove a generalized adiabatic theorem for Markov chains and provide examples and applications related to Glauber dynamics of Ising model over Z^d/nZ^d. The theorems derived in this paper describe a type of adiabatic dynamics for l^1(R_+^n) norm preserving, time inhomogeneous Markov transformations, while quantum adiabatic theorems deal with l^2(C^n) norm preserving ones, i.e. gradually changing unitary dynamics in C^n
    corecore