78 research outputs found
Euclid preparation. XXIV. Calibration of the halo mass function in CDM cosmologies
Euclid's photometric galaxy cluster survey has the potential to be a very
competitive cosmological probe. The main cosmological probe with observations
of clusters is their number count, within which the halo mass function (HMF) is
a key theoretical quantity. We present a new calibration of the analytic HMF,
at the level of accuracy and precision required for the uncertainty in this
quantity to be subdominant with respect to other sources of uncertainty in
recovering cosmological parameters from Euclid cluster counts. Our model is
calibrated against a suite of N-body simulations using a Bayesian approach
taking into account systematic errors arising from numerical effects in the
simulation. First, we test the convergence of HMF predictions from different
N-body codes, by using initial conditions generated with different orders of
Lagrangian Perturbation theory, and adopting different simulation box sizes and
mass resolution. Then, we quantify the effect of using different halo-finder
algorithms, and how the resulting differences propagate to the cosmological
constraints. In order to trace the violation of universality in the HMF, we
also analyse simulations based on initial conditions characterised by
scale-free power spectra with different spectral indexes, assuming both
Einstein--de Sitter and standard CDM expansion histories. Based on
these results, we construct a fitting function for the HMF that we demonstrate
to be sub-percent accurate in reproducing results from 9 different variants of
the CDM model including massive neutrinos cosmologies. The calibration
systematic uncertainty is largely sub-dominant with respect to the expected
precision of future mass-observation relations; with the only notable exception
of the effect due to the halo finder, that could lead to biased cosmological
inference.Comment: 24 pages, 21 figures, 5 tables, 3 appendixes
Bowel preparation for elective colorectal resection: multi-treatment machine learning analysis on 6241 cases from a prospective Italian cohort
background current evidence concerning bowel preparation before elective colorectal surgery is still controversial. this study aimed to compare the incidence of anastomotic leakage (AL), surgical site infections (SSIs), and overall morbidity (any adverse event, OM) after elective colorectal surgery using four different types of bowel preparation. methods a prospective database gathered among 78 Italian surgical centers in two prospective studies, including 6241 patients who underwent elective colorectal resection with anastomosis for malignant or benign disease, was re-analyzed through a multi-treatment machine-learning model considering no bowel preparation (NBP; No. = 3742; 60.0%) as the reference treatment arm, compared to oral antibiotics alone (oA; No. = 406; 6.5%), mechanical bowel preparation alone (MBP; No. = 1486; 23.8%), or in combination with oAB (MoABP; No. = 607; 9.7%). twenty covariates related to biometric data, surgical procedures, perioperative management, and hospital/center data potentially affecting outcomes were included and balanced into the model. the primary endpoints were AL, SSIs, and OM. all the results were reported as odds ratio (OR) with 95% confidence intervals (95% CI). results compared to NBP, MBP showed significantly higher AL risk (OR 1.82; 95% CI 1.23-2.71; p = .003) and OM risk (OR 1.38; 95% CI 1.10-1.72; p = .005), no significant differences for all the endpoints were recorded in the oA group, whereas MoABP showed a significantly reduced SSI risk (OR 0.45; 95% CI 0.25-0.79; p = .008). conclusions MoABP significantly reduced the SSI risk after elective colorectal surgery, therefore representing a valid alternative to NBP
Abdominal drainage after elective colorectal surgery: propensity score-matched retrospective analysis of an Italian cohort
background: In italy, surgeons continue to drain the abdominal cavity in more than 50 per cent of patients after colorectal resection. the aim of this study was to evaluate the impact of abdominal drain placement on early adverse events in patients undergoing elective colorectal surgery. methods: a database was retrospectively analysed through a 1:1 propensity score-matching model including 21 covariates. the primary endpoint was the postoperative duration of stay, and the secondary endpoints were surgical site infections, infectious morbidity rate defined as surgical site infections plus pulmonary infections plus urinary infections, anastomotic leakage, overall morbidity rate, major morbidity rate, reoperation and mortality rates. the results of multiple logistic regression analyses were presented as odds ratios (OR) and 95 per cent c.i. results: a total of 6157 patients were analysed to produce two well-balanced groups of 1802 patients: group (A), no abdominal drain(s) and group (B), abdominal drain(s). group a versus group B showed a significantly lower risk of postoperative duration of stay >6 days (OR 0.60; 95 per cent c.i. 0.51-0.70; P < 0.001). a mean postoperative duration of stay difference of 0.86 days was detected between groups. no difference was recorded between the two groups for all the other endpoints. conclusion: this study confirms that placement of abdominal drain(s) after elective colorectal surgery is associated with a non-clinically significant longer (0.86 days) postoperative duration of stay but has no impact on any other secondary outcomes, confirming that abdominal drains should not be used routinely in colorectal surgery
Euclid preparation: XXXV. Covariance model validation for the two-point correlation function of galaxy clusters
Aims. We validate a semi-analytical model for the covariance of the real-space two-point correlation function of galaxy clusters.
Methods. Using 1000 PINOCCHIO light cones mimicking the expected Euclid sample of galaxy clusters, we calibrated a simple model to accurately describe the clustering covariance. Then, we used this model to quantify the likelihood-analysis response to variations in the covariance, and we investigated the impact of a cosmology-dependent matrix at the level of statistics expected for the Euclid survey of galaxy clusters.
Results. We find that a Gaussian model with Poissonian shot-noise does not correctly predict the covariance of the two-point correlation function of galaxy clusters. By introducing a few additional parameters fitted from simulations, the proposed model reproduces the numerical covariance with an accuracy of 10%, with differences of about 5% on the figure of merit of the cosmological parameters Ωm and σ8. We also find that the covariance contains additional valuable information that is not present in the mean value, and the constraining power of cluster clustering can improve significantly when its cosmology dependence is accounted for. Finally, we find that the cosmological figure of merit can be further improved when mass binning is taken into account. Our results have significant implications for the derivation of cosmological constraints from the two-point clustering statistics of the Euclid survey of galaxy clusters
Euclid preparation: XXXIX. The effect of baryons on the halo mass function
The Euclid photometric survey of galaxy clusters stands as a powerful cosmological tool, with the capacity to significantly propel our understanding of the Universe. Despite being subdominant to dark matter and dark energy, the baryonic component of our Universe holds substantial influence over the structure and mass of galaxy clusters. This paper presents a novel model that can be used to precisely quantify the impact of baryons on the virial halo masses of galaxy clusters using the baryon fraction within a cluster as a proxy for their effect. Constructed on the premise of quasi-adiabaticity, the model includes two parameters, which are calibrated using non-radiative cosmological hydrodynamical simulations, and a single large-scale simulation from the Magneticum set, which includes the physical processes driving galaxy formation. As a main result of our analysis, we demonstrate that this model delivers a remarkable 1% relative accuracy in determining the virial dark matter-only equivalent mass of galaxy clusters starting from the corresponding total cluster mass and baryon fraction measured in hydrodynamical simulations. Furthermore, we demonstrate that this result is robust against changes in cosmological parameters and against variation of the numerical implementation of the subresolution physical processes included in the simulations. Our work substantiates previous claims regarding the impact of baryons on cluster cosmology studies. In particular, we show how neglecting these effects would lead to biased cosmological constraints for a Euclid-like cluster abundance analysis. Importantly, we demonstrate that uncertainties associated with our model arising from baryonic corrections to cluster masses are subdominant when compared to the precision with which mass–observable (i.e. richness) relations will be calibrated using Euclid and to our current understanding of the baryon fraction within galaxy clusters
Euclid preparation TBD. The effect of baryons on the Halo Mass Function
The Euclid photometric survey of galaxy clusters stands as a powerful
cosmological tool, with the capacity to significantly propel our understanding
of the Universe. Despite being sub-dominant to dark matter and dark energy, the
baryonic component in our Universe holds substantial influence over the
structure and mass of galaxy clusters. This paper presents a novel model to
precisely quantify the impact of baryons on galaxy cluster virial halo masses,
using the baryon fraction within a cluster as proxy for their effect.
Constructed on the premise of quasi-adiabaticity, the model includes two
parameters calibrated using non-radiative cosmological hydrodynamical
simulations and a single large-scale simulation from the Magneticum set, which
includes the physical processes driving galaxy formation. As a main result of
our analysis, we demonstrate that this model delivers a remarkable one percent
relative accuracy in determining the virial dark matter-only equivalent mass of
galaxy clusters, starting from the corresponding total cluster mass and baryon
fraction measured in hydrodynamical simulations. Furthermore, we demonstrate
that this result is robust against changes in cosmological parameters and
against varying the numerical implementation of the sub-resolution physical
processes included in the simulations. Our work substantiates previous claims
about the impact of baryons on cluster cosmology studies. In particular, we
show how neglecting these effects would lead to biased cosmological constraints
for a Euclid-like cluster abundance analysis. Importantly, we demonstrate that
uncertainties associated with our model, arising from baryonic corrections to
cluster masses, are sub-dominant when compared to the precision with which
mass-observable relations will be calibrated using Euclid, as well as our
current understanding of the baryon fraction within galaxy clusters.Comment: 18 pages, 10 figures, 4 tables, 1 appendix, abstract abridged for
arXiv submissio
Evolving trends in the management of acute appendicitis during COVID-19 waves. The ACIE appy II study
Background: In 2020, ACIE Appy study showed that COVID-19 pandemic heavily affected the management of patients with acute appendicitis (AA) worldwide, with an increased rate of non-operative management (NOM) strategies and a trend toward open surgery due to concern of virus transmission by laparoscopy and controversial recommendations on this issue. The aim of this study was to survey again the same group of surgeons to assess if any difference in management attitudes of AA had occurred in the later stages of the outbreak.
Methods: From August 15 to September 30, 2021, an online questionnaire was sent to all 709 participants of the ACIE Appy study. The questionnaire included questions on personal protective equipment (PPE), local policies and screening for SARS-CoV-2 infection, NOM, surgical approach and disease presentations in 2021. The results were compared with the results from the previous study.
Results: A total of 476 answers were collected (response rate 67.1%). Screening policies were significatively improved with most patients screened regardless of symptoms (89.5% vs. 37.4%) with PCR and antigenic test as the preferred test (74.1% vs. 26.3%). More patients tested positive before surgery and commercial systems were the preferred ones to filter smoke plumes during laparoscopy. Laparoscopic appendicectomy was the first option in the treatment of AA, with a declined use of NOM.
Conclusion: Management of AA has improved in the last waves of pandemic. Increased evidence regarding SARS-COV-2 infection along with a timely healthcare systems response has been translated into tailored attitudes and a better care for patients with AA worldwide
Structural validation of geothermal water basins constructed with durability enhanced ultra high performance fiber reinforced concrete (Ultra High Durability Concrete)
Ultra-High Performance Concrete (UHPC) proved to be very durable in harsh environments, primarily because of the extremely low porosity of the matrix (uncracked). However, the limited availability of design standards is still a barrier to widespread applications of UHPC, together with still limited knowledge of its durability in the real (cracked) service conditions. In this paper, the use of tailored UHPC is introduced, whose composition has been specifically designed to achieve enhanced durability in the cracked state combined with extremely aggressive environments. Validation of the material and structural design concept on a full scale structure is presented, with reference to a tank intended to contain geothermal water from the cooling tower at a geothermal power plant. This pilot structure was designed and constructed using both ordinary reinforced concrete and durability enhanced UHPC, which is called hereafter Ultra High Durability Concrete (UHDC), for comparative assessment purposes. Upon the completion of the pilot construction and entering its service life, periodic assessment and validation tests have been carried out to validate the structural design assumptions and to check the serviceability requirements. Results of these tests, performed over the span of two years are reported in detail in this paper to validate the material and structural concepts. The study highlights the most important parameters that could affect the performance of UHPC structures during casting and service life. The overall project framework presented in this paper has to be intended as a pioneer study in moving towards a performance based durability-design approach for UHPC structures
IPOD Study: Management of Acute Left Colonic Diverticulitis in Italian Surgical Departments.
Background: In recent years, the emergency management of acute left colonic diverticulitis (ALCD) has evolved dramatically despite lack of strong evidence. As a consequence, management strategies are frequently guided by surgeon’s personal preference, rather than by scientific evidence. The primary aim of IPOD study (Italian Prospective Observational Diverticulitis study) is to describe both the diagnostic and treatment profiles of patients with ALCD in the Italian surgical departments. Methods: IPOD study is a prospective observational study performed during a 6-month period (from April 1 2015 to September 1 2015) and including 89 Italian surgical departments. All consecutive patients with suspected clinical diagnosis of ALCD confirmed by imaging and seen by a surgeon were included in the study. The study was promoted by the Italian Society of Hospital Surgeons and the World Society of Emergency Surgery Italian chapter. Results: Eleven hundred and twenty-five patients with a median age of 62 years [interquartile range (IQR), 51–74] were enrolled in the IPOD study. One thousand and fifty-four (93.7%) patients were hospitalized with a median duration of hospitalization of 7 days (IQR 5–10). Eight hundred and twenty-eight patients (73.6%) underwent medical treatment alone, 13 patients had percutaneous drainage (1.2%), and the other 284 (25.2%) patients underwent surgery as first treatment. Among 121 patients having diffuse peritonitis, 71 (58.7%) underwent Hartmann’s resection. However, the Hartmann’s resection was used even in patients with lower stages of ALCD (36/479; 7.5%) where other treatment options could be more adequate. Conclusions: The IPOD study demonstrates that in the Italian surgical departments treatment strategies for ALCD are often guided by the surgeon’s personal preference
- …