7 research outputs found

    Implementation of a three-quantum-bit search algorithm

    Get PDF
    We report the experimental implementation of Grover's quantum search algorithm on a quantum computer with three quantum bits. The computer consists of molecules of 13^{13}C-labeled CHFBr2_2, in which the three weakly coupled spin-1/2 nuclei behave as the bits and are initialized, manipulated, and read out using magnetic resonance techniques. This quantum computation is made possible by the introduction of two techniques which significantly reduce the complexity of the experiment and by the surprising degree of cancellation of systematic errors which have previously limited the total possible number of quantum gates.Comment: Published in Applied Physics Letters, vol. 76, no. 5, 31 January 2000, p.646-648, after minor revisions. (revtex, mypsfig2.sty, 3 figures

    Nuclear Magnetic Resonance Quantum Computing Using Liquid Crystal Solvents

    Get PDF
    Liquid crystals offer several advantages as solvents for molecules used for nuclear magnetic resonance quantum computing (NMRQC). The dipolar coupling between nuclear spins manifest in the NMR spectra of molecules oriented by a liquid crystal permits a significant increase in clock frequency, while short spin-lattice relaxation times permit fast recycling of algorithms, and save time in calibration and signal-enhancement experiments. Furthermore, the use of liquid crystal solvents offers scalability in the form of an expanded library of spin-bearing molecules suitable for NMRQC. These ideas are demonstrated with the successful execution of a 2-qubit Grover search using a molecule (13^{13}C1^{1}HCl3_3) oriented in a liquid crystal and a clock speed eight times greater than in an isotropic solvent. Perhaps more importantly, five times as many logic operations can be executed within the coherence time using the liquid crystal solvent.Comment: Minor changes. Published in Appl. Phys. Lett. v.75, no.22, 29 Nov 1999, p.3563-356

    Realization of logically labeled effective pure states for bulk quantum computation

    Full text link
    We report the first use of "logical labeling" to perform a quantum computation with a room-temperature bulk system. This method entails the selection of a subsystem which behaves as if it were at zero temperature - except for a decrease in signal strength - conditioned upon the state of the remaining system. No averaging over differently prepared molecules is required. In order to test this concept, we execute a quantum search algorithm in a subspace of two nuclear spins, labeled by a third spin, using solution nuclear magnetic resonance (NMR), and employing a novel choice of reference frame to uncouple nuclei.Comment: PRL 83, 3085 (1999). Small changes made to improve readability and remove ambiguitie
    corecore