16 research outputs found
Structural Design and Testing of Digitally Manufactured Concrete Structures
The form freedom enabled by digital fabrication with concrete technologies provides advantages for a wide range of concrete based objects, from architectural to structural elements. The current chapter focuses on the specifics of structural design and engineering of DFC with emphasis on those technologies based on Additive Manufacturing with extrusion. Since it is a new and innovative way to build, a clear common approach to structural engineering has not yet been developed. As a result, this chapter aims to introduce the specific challenges of structural design and engineering with the additive manufacturing technology, providing an overview of structural typologies that have been developed (especially concerning the reinforcement strategies, including fibre reinforcement). Furthermore, the structural principles adopted in DFC and the codified approaches used in conventional reinforced concrete is compared, and putative structural testing procedures and validation methods for DFC are reported.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Concrete StructuresApplied Mechanic
Intranasal midazolam: pharmacokinetics and pharmacodynamics assessed by quantitative EEG in healthy volunteers
The pharmacokinetics and pharmacodynamics of a highly concentrated cyclodextrin-based intranasal (i.n.) midazolam formulation containing the absorption-enhancer chitosan were studied in 12 healthy volunteers and compared with intravenous (i.v.) midazolam. The pharmacodynamic (PD) effects were assessed using quantitative electroencephalography (EEG). Maximal plasma concentrations of 63 and 110 ng/ml were reached at 8.4 and 7.6 min after 3 and 6 mg i.n. midazolam, respectively. After 5 mg i.v. and 6 and 3 mg i.n. midazolam, the times to onset of significant EEG effects in the β2 band (18-25 Hz) were 1.2, 5.5, and 6.9 min, respectively, and the times to loss of response to auditory stimuli were 3.0, 8.0, and 15.0 min, respectively. A sigmoid maximum-effect (E(max)) model indicated disequilibrium between plasma and effect-site concentrations, with equilibration half-lives of 2.1-4.8 min. The observed pharmacokinetic-PD (PK-PD) properties suggest that i.n. midazolam deserves to be evaluated as an easy and noninvasive method of administering a first benzodiazepine dose, e.g., in out-of-hospital emergency settings with no immediate i.v. access