50,422 research outputs found

    Parametrization and penalties in spline models with an application to survival analysis

    Get PDF
    In this paper we show how a simple parametrization, built from the definition of cubic splines, can aid in the implementation and interpretation of penalized spline models, whatever configuration of knots we choose to use. We call this parametrization value-first derivative parametrization. We perform Bayesian inference by exploring the natural link between quadratic penalties and Gaussian priors. However, a full Bayesian analysis seems feasible only for some penalty functionals. Alternatives include empirical Bayes methods involving model selection type criteria. The proposed methodology is illustrated by an application to survival analysis where the usual Cox model is extended to allow for time-varying regression coefficients

    Seismic vulnerability of Modern Architecture building's: Le Corbusier style: a case study

    Get PDF
    In Portugal, at the end of the World War II, a new generation of architects emerged, influenced by the Modern Movement Architecture, born in Central-Europe in the early twenties but now influenced also by the Modern Brazilian Architecture. They worked with new typologies, such as multifamily high-rise buildings, and built them in the most important cities of the country, during the fifties, reflecting the principles of the Modernity and with a strong formal conception inspired in the International Style’s codes. Concrete, as material and technology, allowed that those “Unity Centre” buildings become modern objects, expressing the five-point formula that Le Corbusier enounced in 1927 and draw at the “Unité d’Habitation de Marseille”, namely: the building lifted in pilotis, the free design of the plan, the free design of the façade, the unbroken horizontal window and the roof terrace. In Lisbon, late forties urban plans transformed and expanded the city, creating modulated buildings repeated in great extensions – that was a progressist idea of standardization. The Infante Santo complex is a successful adaptation to the Lisbon reality of the Modern Urbanism and Architecture. In the fifties, it was built a large number of Modern housing buildings in Lisbon, with structural characteristics that, in certain conditions, can induce weaknesses in structural behaviour, especially under earthquake loading. For example, the concept of buildings lifted in pilotis can strongly facilitate the occurrence of soft-storey mechanisms, which turns these structures very vulnerable to earthquake actions. The development and calibration of refined numerical tools, as well as, assessment and design codes makes feasible the structural safety assessment of existing buildings. To investigate the vulnerability of this type of construction, one building representative of the Modern Architecture, at the Infante Santo Avenue, was studied. This building was studied with the non-linear dynamic analysis program PORANL, which allows the safety evaluation according to the recently proposed standards

    Experimental response of RC columns built with plain bars under unidirectional cyclic loading

    Get PDF
    A large number of existing reinforced concrete (RC) buildings structures were designed and built before mid-70’s, when the reinforcing bars had plain surface and prior to the enforcement of the modern seismic-oriented design philosophies. This paper describes a series of unidirectional cyclic tests performed on seven full-scale columns built with plain reinforcing bars, without adequate reinforcement detailing for seismic demands. The specimens have different reinforcing steel details and different cross sections. A further monotonic test was also carried out for one of the specimens and an additional column, built with deformed bars, was cyclically tested for comparison with the results for the specimens with plain bars. The main experimental results are presented and discussed. The influence of bond properties on the column behaviour is evidenced by differences observed between the cyclic response of similar specimens with plain and deformed bars. The influence of reinforcement amount and displacement history on the column response is also investigated

    Experimental and numerical analysis of the cyclic behaviour of RC beam-column connections with plain reinforcing bars

    Get PDF
    The information available in the literature about the cyclic behaviour of reinforced concrete elements with plain reinforcing bars is scarce. As a consequence, the influence of bar slippage in elements with plain bars is not yet comprehensively understood. In this paper are presented and discussed the main results of the cyclic tests carried out on five full-scale reinforced concrete beam-column joints with plain bars and without specific detailing for seismic demands. An additional joint specimen with deformed bars was also tested for comparison. Furthermore, numerical models were built to simulate the response of two of the specimens. Particular attention was given to the influence of bar slippage. The results of the conducted analyses underline the importance of accounting for bond-slip in the numerical modelling of elements with plain bars and also highlight the need for specific models to simulate the effects of this mechanism in the presence of plain bars

    Cyclic response of RC beam-column joints reinforced with plain bars: an experimental testing campaign

    Get PDF
    Existing reinforced concrete (RC) buildings constructed until the mid-70’s, with plain reinforcing bars, are expected to behave poorly when subjected to earthquake actions. This paper describes an experimental program designed to investigate the influence of poor detailing on the cyclic behaviour of RC beam-column joint elements. Cyclic tests were performed on five interior and five exterior full-scale beam-column joints with different detailing characteristics and reinforced with plain bars. An additional joint of each type was built with deformed bars for an evaluation of the influence of bond properties on the cyclic response of the structural element. The force-displacement global response, energy dissipation, equivalent damping and damage behaviour of the joints was investigated and the main results are presented and discussed. The experimental results indicate that the bond-slip mechanism has significantly influenced the cyclic response of the beam-column joints. The specimens built with plain bars showed lower energy dissipation, stiffness and equivalent damping

    Long-Time Behaviour and Self-Similarity in a Coagulation Equation with Input of Monomers

    Get PDF
    For a coagulation equation with Becker-Doring type interactions and time-independent monomer input we study the detailed long-time behaviour of nonnegative solutions and prove the convergence to a self-similar function.Comment: 30 pages, 5 Figures, now published in Markov Processes and Related Fields 12, 367-398, (2006

    Nonlinear modeling of the cyclic response of RC columns

    Get PDF
    Cyclic load reversals (like those induced by earthquakes) result in accelerated bond degradation, leading to significant bar slippage. The bond-slip mechanism is reported to be one of the most common causes of damage and even collapse of existing RC structures subjected to earthquake loading. RC structures with plain reinforcing bars, designed and built prior to the enforcement of the modern seismic-oriented design philosophies, are particularly sensitive to bond degradation. However, perfect bond conditions are typically assumed in the numerical analysis of RC structures. This paper describes the numerical modeling of the cyclic response of two RC columns, one built with deformed bars and the other with plain bars and structural detailing similar to that typically adopted in pre-1970s structures. For each column, different modeling strategies to simulate the column response were tested. Models were built using the OpenSees and the SeismoStruct platforms, and calibrated with the available tests results. Within each platform, different types of nonlinear elements were used to represent the columns. Bond-slip effects were included in the OpenSees models resorting to a simple modeling strategy. The models and the parameters adopted are presented and discussed. Comparison is established between the most relevant experimental results and the corresponding results provided by the numerical models. Conclusions are drawn about the capacity of the tested models to simulate the columns response and about the influence of considering or not considering the effects of bars slippage

    Seismic strengthening of beam-column joints with multidirectional CFRP laminates

    Get PDF
    An experimental program was carried out to analyse the potentialities of a technique based on the use of multidirectional CFRP laminates (MDL-CFRP) for the seismic repair and strengthening of reinforced concrete (RC) beam-column joints. This experimental program comprises cyclic tests on three full-scale RC joints, representative of interior beam-column connections in buildings. The joints were initially submitted to a cyclic test inducing a damage pattern representative of a seismic event. Subsequently, they were repaired and strengthened with MDL-CFRP. The strengthened joints were then tested for the same loading history of the original ones up to their failure. The adopted strengthening technique uses the MDL-CFRP that are simultaneously glued and anchored to the concrete surfaces. This technique is called Mechanically Fastened and Externally Bonded Reinforcement (MF-EBR). In the present study, the effectiveness of two different strengthening configurations was investigated. The tests are described and the main results are presented and analyzed

    Topology and Dynamics in Complex Networks: The Role of Edge Reciprocity

    Full text link
    A key issue in complex systems regards the relationship between topology and dynamics. In this work, we use a recently introduced network property known as steering coefficient as a means to approach this issue with respect to different directed complex network systems under varying dynamics. Theoretical and real-world networks are considered, and the influences of reciprocity and average degree on the steering coefficient are quantified. A number of interesting results are reported that can assist the design of complex systems exhibiting larger or smaller relationships between topology and dynamics
    corecore