2 research outputs found
Determination of drug-polymer solubility from supersaturated spray-dried amorphous solid dispersions: a case study with Efavirenz and Soluplus®
International audienceAmorphous solid dispersions (ASDs) are found to be a well-established strategy for overcoming limited aqueous solubility and poor oral bioavailability of active pharmaceutical ingredients (APIs). One of the main parameters affecting ASDs physical stability is the API solubility in the carrier, because this value determines the maximal API load without a risk of phase separation and recrystallization. Phase-diagrams can be experimentally obtained by following the recrystallization of the API from a supersaturated homogeneous API-polymer solid solution, commonly produced by processes as solvent casting or comilling, which are very time-consuming (hours). The work deals with the construction of a temperature-composition EFV-Soluplus® phase diagram, from a thermal study of recrystallization of a supersaturated solid solution (85 wt% in EFV) generated by spray drying. This supersaturated solution is kept at a given annealing temperature to reach the equilibrium state and the amount that still remains dispersed in the polymer carrier at this equilibrium temperature is determined by means of the new glass transition temperature of the binary mixture. From our knowledge, this is the first study employing a fast process (spray drying) to prepare a supersaturated solid solution of an API in a polymer aiming to determine a temperature-composition phase diagram. The EFV solubility in Soluplus ranges from 20 wt% at 25 °C to 30 wt% at 40 °C. It can be a very useful preformulation tool for researchers studying amorphous solid dispersions of Efavirenz in Soluplus, to assist for predicting the stability of EFV-Soluplus ASDs at different EFV loadings and under different thermal conditions