27 research outputs found

    State-Space Approach for SPMSM Sensorless Passive Algorithm Tuning

    Get PDF
    Sensorless algorithms for Permanent Magnet Synchronous Motors (PMSM) have achieved increasing interest in the technical literature over the last few years. They can be divided into active methods and passive methods: the first inject high-frequency signals exploiting rotor anisotropy, whereas the second are based on observers. Recently, a sensorless control based on a rotor flux observer has been presented in the technical literature, which gives very accurate results in terms of rotor position estimation and robustness. In this paper, the aforementioned observer is considered and a procedure for choosing stabilizing gains of the observer is proposed. The contribution of the paper is three-fold: the mathematical modelling of the rotor flux observer, the methodology for the definition of the observer gains, and the presentation of the experimental results

    Surface Permanent Magnet Synchronous Motors’ Passive Sensorless Control: A Review

    Get PDF
    Sensorless control of permanent magnet synchronous motors is nowadays used in many industrial, home and traction applications, as it allows the presence of a position sensor to be avoided with benefits for the cost and reliability of the drive. An estimation of the rotor position is required to perform the field-oriented control (FOC), which is the most common control scheme used for this type of motor. Many algorithms have been developed for this purpose, which use different techniques to derive the rotor angle from the stator voltages and currents. Among them, the so-called passive methods have gained increasing interest as they do not introduce additional losses and current distortion associated instead with algorithms based on the injection of high-frequency signals. The aim of this paper is to present a review of the main passive sensorless methods proposed in the technical literature over the last few years, analyzing their main features and principles of operation. An experimental comparison among the most promising passive sensorless algorithms is then reported, focusing on their performance in the low-speed operating region

    Double input DC-DC converter for highly flexible and reliable Battery Storage Systems

    Get PDF
    Battery storage systems are fundamental in UPS applications. UPSs are exploited when high reliability is required. A DC-DC converter is typically used to interface the battery to the inverter to match the different voltage levels. In normal operation, the battery of the UPS is not used and it intervenes only during grid blackout. However, the battery is subjected to deterioration and UPS intervention could fail. In medium and high power UPS, more battery modules are connected in series. If one battery is damaged, all the series is affected. To prevent this issue, a new double-input DC-DC converter is presented in this paper. The two DC sources can be controlled separately, resulting in a system reliability improvement. In addition, the damaged battery is not bypassed; hence the overall system performance can be maximized, since the deteriorated battery can provide energy at a limited rate. Additionally, the proposed converter allows batteries based on different technologies to be mixed together, achieving the best performances from each technology

    Browsing Isolated Population Data

    Get PDF
    BACKGROUND: In our studies of genetically isolated populations in a remote mountain area in the center of Sardinia (Italy), we found that 80–85% of the inhabitants of each village belong to a single huge pedigree with families strictly connected to each other through hundreds of loops. Moreover, intermarriages between villages join pedigrees of different villages through links that make family trees even more complicated. Unfortunately, none of the commonly used pedigree drawing tools are able to draw the complete pedigree, whereas it is commonly accepted that the visual representation of families is very important as it helps researchers in identifying clusters of inherited traits and genotypes. We had a representation issue that compels researchers to work with subsets extracted from the overall genealogy, causing a serious loss of information on familiar relationships. To visually explore such complex pedigrees, we developed PedNavigator, a browser for genealogical databases properly suited for genetic studies. RESULTS: The PedNavigator is useful for genealogical research due to its capacity to represent family relations between persons and to make a visual verification of the links during family history reconstruction. As for genetic studies, it is helpful to follow propagation of a specific set of genetic markers (haplotype), or to select people for linkage analysis, showing relations between various branch of a family tree of affected subjects. AVAILABILITY: PedNavigator is an application integrated into a Framework designed to handle data for human genetic studies based on the Oracle platform. To allow the use of PedNavigator also to people not owning the same required informatics infrastructure or systems, we developed PedNavigator Lite with mainly the same features of the integrated one, based on MySQL database server. This version is free for academic users, and it is available for download from our sit

    High Differentiation among Eight Villages in a Secluded Area of Sardinia Revealed by Genome-Wide High Density SNPs Analysis

    Get PDF
    To better design association studies for complex traits in isolated populations it's important to understand how history and isolation moulded the genetic features of different communities. Population isolates should not “a priori” be considered homogeneous, even if the communities are not distant and part of a small region. We studied a particular area of Sardinia called Ogliastra, characterized by the presence of several distinct villages that display different history, immigration events and population size. Cultural and geographic isolation characterized the history of these communities. We determined LD parameters in 8 villages and defined population structure through high density SNPs (about 360 K) on 360 unrelated people (45 selected samples from each village). These isolates showed differences in LD values and LD map length. Five of these villages show high LD values probably due to their reduced population size and extreme isolation. High genetic differentiation among villages was detected. Moreover population structure analysis revealed a high correlation between genetic and geographic distances. Our study indicates that history, geography and biodemography have influenced the genetic features of Ogliastra communities producing differences in LD and population structure. All these data demonstrate that we can consider each village an isolate with specific characteristics. We suggest that, in order to optimize the study design of complex traits, a thorough characterization of genetic features is useful to identify the presence of sub-populations and stratification within genetic isolates

    State-Space Approach for SPMSM Sensorless Passive Algorithm Tuning

    No full text
    Sensorless algorithms for Permanent Magnet Synchronous Motors (PMSM) have achieved increasing interest in the technical literature over the last few years. They can be divided into active methods and passive methods: the first inject high-frequency signals exploiting rotor anisotropy, whereas the second are based on observers. Recently, a sensorless control based on a rotor flux observer has been presented in the technical literature, which gives very accurate results in terms of rotor position estimation and robustness. In this paper, the aforementioned observer is considered and a procedure for choosing stabilizing gains of the observer is proposed. The contribution of the paper is three-fold: the mathematical modelling of the rotor flux observer, the methodology for the definition of the observer gains, and the presentation of the experimental results

    Stability Analysis of Open-Loop V/Hz Controlled Asynchronous Machines and Two Novel Mitigation Strategies for Oscillations Suppression

    No full text
    Asynchronous machines are always widely used in most industrial applications due to their reliability, flexibility, and manoeuvrability. To achieve variable speed operations, the quite simple open-loop V/Hz control is largely utilized. Under open-loop V/Hz control, the nonlinear interaction is well known to cause current and torque oscillations while operating at low to medium speeds under light loads. This article presents the stability analysis of induction motors at low–medium frequencies under no-load conditions with the V/Hz control. A system representation in the form of state space is discussed, and the region of instability is plotted against the V/f plane. Two novel and refined methods for the mitigation of oscillations in the region of instability are presented. The two proposed algorithms are finally tested and validated through simulation on an inverter-fed induction motor drive system

    Stability Analysis of Open-Loop V/Hz Controlled Asynchronous Machines and Two Novel Mitigation Strategies for Oscillations Suppression

    No full text
    Asynchronous machines are always widely used in most industrial applications due to their reliability, flexibility, and manoeuvrability. To achieve variable speed operations, the quite simple open-loop V/Hz control is largely utilized. Under open-loop V/Hz control, the nonlinear interaction is well known to cause current and torque oscillations while operating at low to medium speeds under light loads. This article presents the stability analysis of induction motors at low–medium frequencies under no-load conditions with the V/Hz control. A system representation in the form of state space is discussed, and the region of instability is plotted against the V/f plane. Two novel and refined methods for the mitigation of oscillations in the region of instability are presented. The two proposed algorithms are finally tested and validated through simulation on an inverter-fed induction motor drive system

    Induction Motor Field-Oriented Sensorless Control with Filter and Long Cable

    No full text
    In recent years, part of the efforts of the electric drive researcher has been focused on the study of sensorless control algorithms that allow controlling the machine without a speed measure and with ever-fewer measurement devices. This article proposes a possible solution for the submarine application of an asynchronous motor. The motor is designed to drive a petrol pump at a depth of three thousand meters. The motor is fed by an inverter that is located on an offshore platform, and they are connected through a filter and a cable that is 19.74 km long. In this application, it is not suitable to use a speed measurement device; in fact, at this depth it is important to use as few components as possible, in order to increase the system reliability. A control algorithm that only needs available electrical measures is proposed below

    A New Feed-Forward Control for Dynamics Improvement in a Dual-Input DC–DC Converter for Hybrid Vehicle Applications

    No full text
    In this study, a double-input single-output bidirectional DC-DC converter is considered. This particular architecture allows less switches to be used than a conventional solution. A new feed-forward current control for this DC-DC converter with three switches is presented in this paper. The modulation technique proposed in the literature for the aforementioned converter leads to a consistent loss reduction at low load, exploiting the DCM. As a drawback, when using this control strategy, the dynamic response worsens significantly. To speed up the control, a feed-forward approach is designed and implemented using a simplified converter electrical model. The proposed strategy is compared with the conventional PI controller, and it is validated and verified through simulation results in the MATLAB/Simulink/PLECS environment and through experimental tests using a converter prototype
    corecore