99 research outputs found

    NRSM 212N.00: Ecology, Physics and Taxonomy of Soils

    Get PDF

    FOR 210.01: Introductory Soils

    Get PDF

    NRSM 408.R01: Global Cycles and Climate

    Get PDF

    NRSM 211N.01: Soils and Water

    Get PDF

    BIOS 532.01: Fundamentals of Ecosystem Ecology

    Get PDF

    Microbial Consumption of Atmospheric Isoprene in a Temperate Forest Soil

    Get PDF
    Isoprene (2-methyl-1,3 butadiene) is a low-molecular-weight hydrocarbon emitted in large quantities to the atmosphere by vegetation and plays a large role in regulating atmospheric chemistry. Until now, the atmosphere has been considered the only significant sink for isoprene. However, in this study we performed both in situ and in vitro experiments with soil from a temperate forest near Ithaca, N.Y., that indicate that the soil provides a sink for atmospheric isoprene and that the consumption of isoprene is carried out by microorganisms. Consumption occurred rapidly in field chambers (672.60 +/- 30.12 to 2,718.36 +/- 86.40 pmol gdw day) (gdw is grams [dry weight] of soil; values are means +/- standard deviations). Subsequent laboratory experiments confirmed that isoprene loss was due to biological processes: consumption was stopped by autoclaving the soil; consumption rates increased with repeated exposure to isoprene; and consumption showed a temperature response consistent with biological activity (with an optimum temperature of 30 degrees C). Isoprene consumption was diminished under low oxygen conditions (120 +/- 7.44 versus 528.36 +/- 7.68 pmol gdw day under ambient O(2) concentrations) and showed a strong relationship with soil moisture. Isoprene-degrading microorganisms were isolated from the site, and abundance was calculated as 5.8 x 10 +/- 3.2 x 10 cells gdw. Our results indicate that soil may provide a significant biological sink for atmospheric isoprene

    NRSM 210N.00: Soils, Water and Climate

    Get PDF

    Consumption of Atmospheric Isoprene in Soil

    Get PDF
    Natural vegetation annually emits 503 Tg yr−1 of isoprene (2-methyl-1,3 butadiene) to the global atmosphere where it reacts very rapidly with hydroxyl radicals and strongly regulates atmospheric chemistry. Current models of the compound\u27s chemical behavior assume the atmosphere is the only significant sink; however, there is evidence that soil may consume isoprene. Here we show through field and laboratory studies that soil exposed to isoprene at low mixing ratios removed isoprene to concentrations below those commonly observed in forest canopies, and that the removal of isoprene was biologically mediated. On the basis of laboratory studies with soil from several different ecosystems worldwide, we provide a first approximation of a global annual soil sink for isoprene of 20.4 Tg yr−1, suggesting a soil sink should be included in models that attempt to describe the effect of isoprene emission on atmospheric chemical processes

    Nitrogen Cycling Responses to Mountain Pine Beetle Disturbance in a High Elevation Whitebark Pine Ecosystem

    Get PDF
    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+ ) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks

    Tree Species Control Rates of Free-Living Nitrogen Fixation in a Tropical Rain Forest

    Get PDF
    Tropical rain forests represent some of the most diverse ecosystems on earth, yet mechanistic links between tree species identity and ecosystem function in these forests remains poorly understood. Here, using free-living nitrogen (N) fixation as a model, we explore the idea that interspecies variation in canopy nutrient concentrations may drive significant local-scale variation in biogeochemical processes. Biological N fixation is the largest “natural” source of newly available N to terrestrial ecosystems, and estimates suggest the highest such inputs occur in tropical ecosystems. While patterns of and controls over N fixation in these systems remain poorly known, the data we do have suggest that chemical differences among tree species canopies could affect free-living N fixation rates. In a diverse lowland rain forest in Costa Rica, we established a series of vertical, canopy-to-soil profiles for six common canopy tree species, and we measured free-living N fixation rates and multiple aspects of chemistry of live canopy leaves, senesced canopy leaves, bulk leaf litter, and soil for eight individuals of each tree species. Free-living N fixation rates varied significantly among tree species for all four components, and independent of species identity, rates of N fixation ranged by orders of magnitude along the vertical profile. Our data suggest that variations in phosphorus (P) concentration drove a significant fraction of the observed species-specific variation in free-living N fixation rates within each layer of the vertical profile. Furthermore, our data suggest significant links between canopy and forest floor nutrient concentrations; canopy P was correlated with bulk leaf litter P below individual tree crowns. Thus, canopy chemistry may affect a suite of ecosystem processes not only within the canopy itself, but at and beneath the forest floor as well
    corecore