41 research outputs found

    The potential for bias in principal causal effect estimation when treatment received depends on a key covariate

    Full text link
    Motivated by a potential-outcomes perspective, the idea of principal stratification has been widely recognized for its relevance in settings susceptible to posttreatment selection bias such as randomized clinical trials where treatment received can differ from treatment assigned. In one such setting, we address subtleties involved in inference for causal effects when using a key covariate to predict membership in latent principal strata. We show that when treatment received can differ from treatment assigned in both study arms, incorporating a stratum-predictive covariate can make estimates of the "complier average causal effect" (CACE) derive from observations in the two treatment arms with different covariate distributions. Adopting a Bayesian perspective and using Markov chain Monte Carlo for computation, we develop posterior checks that characterize the extent to which incorporating the pretreatment covariate endangers estimation of the CACE. We apply the method to analyze a clinical trial comparing two treatments for jaw fractures in which the study protocol allowed surgeons to overrule both possible randomized treatment assignments based on their clinical judgment and the data contained a key covariate (injury severity) predictive of treatment received.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS477 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Bipartite Interference and Air Pollution Transport: Estimating Health Effects of Power Plant Interventions

    Full text link
    Evaluating air quality interventions is confronted with the challenge of interference since interventions at a particular pollution source likely impact air quality and health at distant locations and air quality and health at any given location are likely impacted by interventions at many sources. The structure of interference in this context is dictated by complex atmospheric processes governing how pollution emitted from a particular source is transformed and transported across space, and can be cast with a bipartite structure reflecting the two distinct types of units: 1) interventional units on which treatments are applied or withheld to change pollution emissions; and 2) outcome units on which outcomes of primary interest are measured. We propose new estimands for bipartite causal inference with interference that construe two components of treatment: a "key-associated" (or "individual") treatment and an "upwind" (or "neighborhood") treatment. Estimation is carried out using a semi-parametric adjustment approach based on joint propensity scores. A reduced-complexity atmospheric model is deployed to characterize the structure of the interference network by modeling the movement of air parcels through time and space. The new methods are deployed to evaluate the effectiveness of installing flue-gas desulfurization scrubbers on 472 coal-burning power plants (the interventional units) in reducing Medicare hospitalizations among 22,603,597 Medicare beneficiaries residing across 23,675 ZIP codes in the United States (the outcome units)

    Weather2vec: Representation Learning for Causal Inference with Non-Local Confounding in Air Pollution and Climate Studies

    Full text link
    Estimating the causal effects of a spatially-varying intervention on a spatially-varying outcome may be subject to non-local confounding (NLC), a phenomenon that can bias estimates when the treatments and outcomes of a given unit are dictated in part by the covariates of other nearby units. In particular, NLC is a challenge for evaluating the effects of environmental policies and climate events on health-related outcomes such as air pollution exposure. This paper first formalizes NLC using the potential outcomes framework, providing a comparison with the related phenomenon of causal interference. Then, it proposes a broadly applicable framework, termed "weather2vec", that uses the theory of balancing scores to learn representations of non-local information into a scalar or vector defined for each observational unit, which is subsequently used to adjust for confounding in conjunction with causal inference methods. The framework is evaluated in a simulation study and two case studies on air pollution where the weather is an (inherently regional) known confounder

    Causal health impacts of power plant emission controls under modeled and uncertain physical process interference

    Full text link
    Causal inference with spatial environmental data is often challenging due to the presence of interference: outcomes for observational units depend on some combination of local and non-local treatment. This is especially relevant when estimating the effect of power plant emissions controls on population health, as pollution exposure is dictated by (i) the location of point-source emissions, as well as (ii) the transport of pollutants across space via dynamic physical-chemical processes. In this work, we estimate the effectiveness of air quality interventions at coal-fired power plants in reducing two adverse health outcomes in Texas in 2016: pediatric asthma ED visits and Medicare all-cause mortality. We develop methods for causal inference with interference when the underlying network structure is not known with certainty and instead must be estimated from ancillary data. We offer a Bayesian, spatial mechanistic model for the interference mapping which we combine with a flexible non-parametric outcome model to marginalize estimates of causal effects over uncertainty in the structure of interference. Our analysis finds some evidence that emissions controls at upwind power plants reduce asthma ED visits and all-cause mortality, however accounting for uncertainty in the interference renders the results largely inconclusive.Comment: 22 pages, 5 figures. Associated code and supplementary material can be found at https://github.com/nbwikle/estimating-interferenc

    Using Validation Data to Adjust the Inverse Probability Weighting Estimator for Misclassified Treatment

    Get PDF
    The inverse probability weighting (IPW) estimator is widely used to estimate the treatment effect in observational studies in which patient characteristics might not be balanced by treatment group. The estimator assumes that treatment assignment, is error-free, but in reality treatment assignment can be measured with error. This arises in the context of comparative effectiveness research, using administrative data sources in which accurate procedural or billing codes are not always available. We show the bias introduced to the estimator when using error-prone treatment assignment, and propose an adjusted estimator using a validation study to eliminate this bias. In simulations, we explore the impact of the misclassified treatment assignment on the estimator, and compare the performance of our adjusted estimator to an estimate based only on the validation study. We illustrate our method on a comparative effectiveness study assessing surgical treatments among Medicare beneficiaries, diagnosed with brain tumors. We use linked SEER-Medicare data as our validation data, and apply our method to Medicare Part A hospital claims data where treatment is based on ICD9 billing codes, which do not accurately reflect surgical treatment
    corecore