6 research outputs found

    Effects of Saccharomyces boulardii Supplementation on Nutritional Status, Fecal Parameters, Microbiota, and Mycobiota in Breeding Adult Dogs

    Get PDF
    SIMPLE SUMMARY: The aim of this study was to evaluate the effect of the administration of Saccharomyces boulardii on the nutritional, immunological, inflammatory, stress status, and the gut composition in 25 healthy adult American Staffordshire Terrier dogs. Supplementation with S. boulardii significantly improved the intestinal status and induced a reduction of stress, a common condition affecting animals managed in a breeding environment. ABSTRACT: The aim of this study was to evaluate the effect of the administration of Saccharomyces boulardii on the nutritional, immunological, inflammatory, and stress status and on the composition of the gut microbiota and mycobiota in healthy adult dogs. A total of 25 American Staffordshire Terrier dogs were selected and randomly assigned to two groups: control (CTR, n = 12) and treated (TRT, n = 13) groups. No significant differences were found between the two groups regarding body weight, body condition score, and fecal score. No significant differences in microbiota/mycobiota, short chain fatty acids, indole/skatole, histamine, zonulin, or lactoferrin were detected. Indeed, supplementation with S. boulardii significantly decreased fecal calprotectin Immunoglobulin A, indicating an improvement in the gut well-being. Interestingly, fecal cortisol significantly decreased in dogs belonging to the TRT group compared to the CTR, suggesting both an improvement of the intestinal status and a reduction of stress, a common condition affecting animals managed in a breeding environment

    Comprehensive study through imaging techniques of the degradation of a resorbable calcium sulphate-based composite bone cement

    No full text
    The stabilization and treatment of vertebral compression fractures via vertebroplasty procedure foresees the injection of bone cements and recent research is focused on the use of degradable cements featuring an appropriate degradation kinetics. This study presents an investigation into the degradation behaviour of a resorbable ceramic composite cement based on calcium sulphate hemihydrate (CSH), supplemented with strontium-containing mesoporous bioactive glasses (Sr-MBG) and zirconia nanoparticles (ZrO2). The alterations in the material's microstructure resulting from the degradation process were thoroughly analysed using two image analysis techniques. Micro-computed tomography (Micro-CT) was employed for scanning, while CT-An software associated with the instrument and a Python-coded image analysis tool were utilised to assess porosity and pore size distribution over time. Comparative analysis of the obtained results demonstrated the efficacy of both techniques in comprehensively understanding the internal microstructural changes and volume variations during the degradation of the ceramic composite cement

    Optimization of an Injectable, Resorbable, Bioactive Cement Able to Release the Anti-Osteoclastogenic Biomolecule ICOS-Fc for the Treatment of Osteoporotic Vertebral Compression Fractures

    Get PDF
    Vertebral compression fractures are typical of osteoporosis and their treatment can require the injection of a cement through a minimally invasive procedure to restore vertebral body height. This study reports the development of an injectable calcium sulphate-based composite cement able to stimulate bone regeneration while inhibiting osteoclast bone resorption. To this aim, different types of strontium-containing mesoporous glass particles (Sr-MBG) were added to calcium sulphate powder to impart a pro-osteogenic effect, and the influence of their size and textural features on the cement properties was investigated. Anti-osteoclastogenic properties were conferred by incorporating into poly(lactic-co-glycolic)acid (PLGA) nanoparticles, a recombinant protein able to inhibit osteoclast activity (i.e., ICOS-Fc). Radiopaque zirconia nanoparticles (ZrO2) were also added to the formulation to visualize the cement injection under fluoroscopy. The measured cement setting times were suitable for the clinical practice, and static mechanical testing determined a compressive strength of ca. 8 MPa, comparable to that of human vertebral bodies. In vitro release experiments indicated a sustained release of ICOS-Fc and Sr2+ ions up to 28 days. Overall, the developed cement is promising for the treatment of vertebral compression fractures and has the potential to stimulate bone regeneration while releasing a biomolecule able to limit bone resorption
    corecore