216 research outputs found

    Local electromagnetic fields surrounding gold nano-cap particles

    Full text link
    Using the discrete dipole approximation (DDA) the local electromagnetic fields surrounding gold nano-cap particles are investigated. Suitable k-vectors and polarization vectors of the incident light are used to determine the largest local electric field enhancement. The largest enhancement can be found for the 864 nm dipole resonance; where the field enhancement is approximately 30 000 times the applied field. The electric field contours surrounding the particle are used to assign the order of the surface plasmon resonances. © 2006 IEEE

    Fabrication of double nano-cup assemblies and their anomalous plasmon absorption

    Full text link
    Double-cup assemblies of nanoscale gold semi-shells have been synthesized using a combination of thermal evaporation and chemical etching. The optical extinction of these structures peaked at 740 nm, but there was also evidence of additional extinction maxima at 560, 940 and 1110 nm. Numerical simulations of the optical properties revealed that the extinction was due mainly to scattering rather than to absorption In contrast, the extinction in simple single-shell nanocups was strongly absorptive in nature. Multiple plasmon resonances were identified in the double-cup structures, including an interesting quadrupole resonance in which oscillations of the inner and outer shells should operate 180° out-of-phase. © 2008 IEEE

    South Africa, now at 2600 Natta Blvd., Bellmore, NY 11710, USA. § Physical Metallurgy Division, Mintek, Private Bag X3015, Randburg, 2125, South Africa. # School of Process and Materials Engineering

    Get PDF
    Abstract. Colour and hardness were measured on a series of alloys along the 76 wt % Au line of the Au-Cu-Al system. Complex, non-monotonic behaviour was observed, which is shown to be correlated with microstructural changes. The available colours include reddish, yellow, 'apricot', white and purple. The hardness of as-cast material varies from 150 to 500 Vickers

    High temperature, low neutron cross-section highentropy alloys in the Nb-Ti-V-Zr system

    Get PDF
    High-entropy alloys (HEAs) with high melting points and low thermal neutron cross-section are promising new cladding materials for generation III+ and IV power reactors. In this study a recently developed high throughput computational screening tool Alloy Search and Predict (ASAP) has been used to identify the most likely candidate single-phase HEAs with low thermal neutron cross-section, from over a million four-element equimolar combinations. The selected NbTiVZr HEA was further studied by density functional theory (DFT) for moduli and lattice parameter, and by CALPHAD to predict phase formation with temperature. HEAs of NbTiVZrx (x = 0.5, 1, 2) were produced experimentally, with Zr varied as the dominant cross-section modifier. Contrary to previous experimental work, these HEAs were demonstrated to constitute a single-phase HEA system; a result obtained using a faster cooling rate following annealing at 1200 °C. However, the beta (BCC) matrix decomposed following aging at 700 °C, into a combination of nano-scale beta, alpha (HCP) and C15 Laves phases

    Homogeneous Gold Catalysis through Relativistic Effects: Addition of Water to Propyne

    Full text link
    In the catalytic addition of water to propyne the Au(III) catalyst is not stable under non-relativistic conditions and dissociates into a Au(I) compound and Cl2. This implies that one link in the chain of events in the catalytic cycle is broken and relativity may well be seen as the reason why Au(III) compounds are effective catalysts.Comment: 12 pages, 3 figures, 1 tabl

    A review of the optical properties of alloys and intermetallics for plasmonics

    Full text link
    Alternative materials are required to enhance the efficacy of plasmonic devices. We discuss the optical properties of a number of alloys, doped metals, intermetallics, silicides, metallic glasses and high pressure materials. We conclude that due to the probability of low frequency interband transitions, materials with partially occupied d-states perform poorly as plasmonic materials, ruling out many alloys, intermetallics and silicides as viable. The increased probability of electron-electron and electron-phonon scattering rules out many doped and glassy metals.Comment: 26 pages, 10 figures, 3 table
    • …
    corecore