24 research outputs found
Update in the management of severe traumatic brain injury
Traumatic brain injury is the main cause of death and disability in the young population, which presumes a large number of years of potential life lost and a great economic impact. Vital and functional outcomes after suffering a traumatic brain injury depend both on the severity of the initial biomechanical impact (primary injury) and on the presence and the severity of systemic or intracranial insults that magnify and/or produce new brain injuries, the so-called secondary injuries. Currently, no treatment in effective in improving functional recovery, except for usual medical care. Therefore, the main purpose of the care provided to a patient with severe cranial trauma is based on preventing and treating secondary brain injuries by maintaining an adequate cerebral perfusion and oxygenation.
Increased intracranial pressure is associated with mortality and with unfavorable functional outcomes is patients with severe traumatic brain injury. The main clinical practice guidelines recommend using a number of staggered therapeutic measures. However, although these measures seem to be efficient in reducing intracranial pressure, this effect is not often translated into clinical improvement.
This review describes the essential principles of the management of patients with severe traumatic brain injury in intensive care units
Haptoglobin improves shock, lung injury, and survival in canine pneumonia
During the last half-century, numerous antiinflammatory agents were tested in dozens of clinical trials and have proven ineffective for treating septic shock. The observation in multiple studies that cell-free hemoglobin (CFH) levels are elevated during clinical sepsis and that the degree of increase correlates with higher mortality suggests an alternative approach. Human haptoglobin binds CFH with high affinity and, therefore, can potentially reduce iron availability and oxidative activity. CFH levels are elevated over approximately 24-48 hours in our antibiotic-treated canine model of S. aureus pneumonia that simulates the cardiovascular abnormalities of human septic shock. In this 96-hour model, resuscitative treatments, mechanical ventilation, sedation, and continuous care are translatable to management in human intensive care units. We found, in this S. aureus pneumonia model inducing septic shock, that commercial human haptoglobin concentrate infusions over 48-hours bind canine CFH, increase CFH clearance, and lower circulating iron. Over the 96-hour study, this treatment was associated with an improved metabolic profile (pH, lactate), less lung injury, reversal of shock, and increased survival. Haptoglobin binding compartmentalized CFH to the intravascular space. This observation, in combination with increasing CFHs clearance, reduced available iron as a potential source of bacterial nutrition while decreasing the ability for CFH and iron to cause extravascular oxidative tissue injury. In contrast, haptoglobin therapy had no measurable antiinflammatory effect on elevations in proinflammatory C-reactive protein and cytokine levels. Haptoglobin therapy enhances normal host defense mechanisms in contrast to previously studied antiinflammatory sepsis therapies, making it a biologically plausible novel approach to treat septic shock
Update in the management of severe traumatic brain injury
Traumatic brain injury is the main cause of death and disability in the young population, which presumes a large number of years of potential life lost and a great economic impact. Vital and functional outcomes after suffering a traumatic brain injury depend both on the severity of the initial biomechanical impact (primary injury) and on the presence and the severity of systemic or intracranial insults that magnify and/or produce new brain injuries, the so-called secondary injuries. Currently, no treatment in effective in improving functional recovery, except for usual medical care. Therefore, the main purpose of the care provided to a patient with severe cranial trauma is based on preventing and treating secondary brain injuries by maintaining an adequate cerebral perfusion and oxygenation.Increased intracranial pressure is associated with mortality and with unfavorable functional outcomes is patients with severe traumatic brain injury. The main clinical practice guidelines recommend using a number of staggered therapeutic measures. However, although these measures seem to be efficient in reducing intracranial pressure, this effect is not often translated into clinical improvement.This review describes the essential principles of the management of patients with severe traumatic brain injury in intensive care units
Recommended from our members
Work of Breathing During Proportional Assist Ventilation as a Predictor of Extubation Failure.
BackgroundDespite decades of research on predictors of extubation success, use of ventilatory support after extubation is common and 10-20% of patients require re-intubation. Proportional assist ventilation (PAV) mode automatically calculates estimated total work of breathing (total WOB). Here, we assessed the performance of total WOB to predict extubation failure in invasively ventilated subjects.MethodsThis prospective observational study was conducted in 6 adult ICUs at an academic medical center. We enrolled intubated subjects who successfully completed a spontaneous breathing trial, had a rapid shallow breathing index < 105 breaths/min/L, and were deemed ready for extubation by the primary team. Total WOB values were recorded at the end of a 30-min PAV trial. Extubation failure was defined as any respiratory support and/or re-intubation within 72 h of extubation. We compared total WOB scores between groups and performance of total WOB for predicting extubation failure with receiver operating characteristic curves.ResultsOf 61 subjects enrolled, 9.8% (n = 6) required re-intubation, and 50.8% (n = 31) required any respiratory support within 72 h of extubation. Median total WOB at 30 min on PAV was 0.9 J/L (interquartile range 0.7-1.3 J/L). Total WOB was significantly different between subjects who failed or were successfully extubated (median 1.1 J/L vs 0.7 J/L, P = .004). The area under the curve was 0.71 [95% CI 0.58-0.85] for predicting any requirement of respiratory support and 0.85 [95% CI 0.69-1.00] for predicting re-intubation alone within 72 h of extubation. Total WOB cutoff values maximizing sensitivity and specificity equally were 1.0 J/L for any respiratory support (positive predictive value [PPV] 70.0%, negative predictive value [NPV] 67.7%) and 1.3 J/L for re-intubation (PPV 26.3%, NPV 97.6%).ConclusionsThe discriminative performance of a PAV-derived total WOB value to predict extubation failure was good, indicating total WOB may represent an adjunctive tool for assessing extubation readiness. However, these results should be interpreted as preliminary, with specific thresholds of PAV-derived total WOB requiring further investigation in a large multi-center study
Recommended from our members
Inhaled nebulized nitrite and nitrate therapy in a canine model of hypoxia-induced pulmonary hypertension
Dysfunction in the nitric oxide (NO) signaling pathway can lead to the development of pulmonary hypertension (PH) in mammals. Discovery of an alternative pathway to NO generation involving reduction from nitrate to nitrite and to NO has motivated the evaluation of nitrite as an alternative to inhaled NO for PH. In contrast, inhaled nitrate has not been evaluated to date, and potential benefits include a prolonged half-life and decreased risk of methemoglobinemia. In a canine model of acute hypoxia-induced PH we evaluated the effects of inhaled nitrate to reduce pulmonary arterial pressure (PAP). In a randomized controlled trial, inhaled nitrate was compared to inhaled nitrite and inhaled saline. Exhaled NO, PAP and systemic blood pressures were continuously monitored. Inhaled nitrite significantly decreased PAP and increased exhaled NO. In contrast, inhaled nitrate and inhaled saline did not decrease PAP or increase exhaled NO. Unexpectedly, we found that inhaled nitrite resulted in prolonged (>5 h) exhaled NO release, increase in nitrate venous/arterial levels and a late surge in venous nitrite levels. These findings do not support a therapeutic role for inhaled nitrate in PH but may have therapeutic implications for inhaled nitrite in various disease states
Usual Care and Informed Consent in Clinical Trials of Oxygen Management in Extremely Premature Infants
<div><p>Objective</p><p>The adequacy of informed consent in the Surfactant, Positive Pressure, and Pulse Oximetry Randomized Trial (SUPPORT) has been questioned. SUPPORT investigators and publishing editors, heads of government study funding agencies, and many ethicists have argued that informed consent was adequate because the two oxygen saturation target ranges studied fell within a range commonly recommended in guidelines. We sought to determine whether each oxygen target as studied in SUPPORT and four similar randomized controlled trials (RCTs) was consistent with usual care.</p><p>Design/Participants/Setting</p><p>PubMed, EMBASE, Web of Science, and Scopus were searched for English articles back to 1990 providing information on usual care oxygen management in extremely premature infants. Data were extracted on intended and achieved oxygen saturation levels as determined by pulse oximetry. Twenty-two SUPPORT consent forms were examined for statements about oxygen interventions.</p><p>Results</p><p>While the high oxygen saturation target range (91 to 95%) was consistent with usual care, the low range (85 to 89%) was not used outside of the SUPPORT trial according to surveys and clinical studies of usual care. During usual care, similar lower limits (< 88%) were universally paired with higher upper limits (≥ 92%) and providers skewed achieved oxygen saturations toward the upper-end of these intended ranges. Blinded targeting of a low narrow range resulted in significantly lower achieved oxygen saturations and a doubling of time spent below the lower limit of the intended range compared to usual care practices. The SUPPORT consent forms suggested that the low oxygen saturation arm was a widely practiced subset of usual care.</p><p>Conclusions</p><p>SUPPORT does not exemplify comparative effectiveness research studying practices or therapies in common use. Descriptions of major differences between the interventions studied and commonly practiced usual care, as well as potential risks associated with these differences, are essential elements of adequate informed consent.</p></div
In canine bacterial pneumonia circulating granulocyte counts determine outcome from donor cells
BACKGROUND: In experimental canine septic shock, depressed circulating granulocyte counts were associated with a poor outcome and increasing counts with prophylactic granulocyte colony-stimulating factor (G-CSF) improved outcome. Therapeutic G-CSF, in contrast, did not improve circulating counts or outcome, and therefore investigation was undertaken to determine whether transfusing granulocytes therapeutically would improve outcome. STUDY DESIGN AND METHODS: Twenty-eight purpose-bred beagles underwent an intrabronchial Staphylococcus aureus challenge and 4 hours later were randomly assigned to granulocyte (40-100 × 109 cells) or plasma transfusion. RESULTS: Granulocyte transfusion significantly expanded the low circulating counts for hours compared to septic controls but was not associated with significant mortality benefit (1/14, 7% vs. 2/14, 14%, respectively; p = 0.29). Septic animals with higher granulocyte count at 4 hours (median [interquartile range] of 3.81 3.39-5.05] vs. 1.77 [1.25-2.50]) had significantly increased survival independent of whether they were transfused with granulocytes. In a subgroup analysis, animals with higher circulating granulocyte counts receiving donor granulocytes had worsened lung injury compared to septic controls. Conversely, donor granulocytes decreased lung injury in septic animals with lower counts. CONCLUSION: During bacterial pneumonia, circulating counts predict the outcome of transfusing granulocytes. With low but normal counts, transfusing granulocytes does not improve survival and injures the lung, whereas for animals with very low counts, but not absolute neutropenia, granulocyte transfusion improves lung function