6 research outputs found

    An innovative respirometric method to assess the autotrophic active fraction: Application to an alternate oxic-anoxic MBR pilot plant

    Get PDF
    An innovative respirometric method was applied to evaluate the autotrophic active fraction in an alternate anoxic/oxic membrane bioreactor (MBR) pilot plant. The alternate cycle (AC) produces a complex microbiological environment that allows the development of both autotrophic and heterotrophic species in one reactor. The present study aimed to evaluate autotrophic and heterotrophic active fractions and highlight the effect of different aeration/non aeration ratios in a AC-MBR pilot plant using respirometry. The results outlined that the autotrophic active fraction values were consistent with the nitrification efficiency and FISH analyses, which suggests its usefulness for estimating the nitrifying population. Intermittent aeration did not significantly affect the heterotrophic metabolic activity but significantly affected the autotrophic biomass development. Finally, the heterotrophic active biomass was strongly affected by the wastewater characteristics, whereas the resultant autotrophic biomass was considerably affected by the duration of the aerated phase

    A review of the factors affecting the performance of anaerobic membrane bioreactor and strategies to control membrane fouling

    No full text
    corecore