48 research outputs found

    Microbial contamination of food refrigeration equipment

    Get PDF
    Refrigeration systems in chilled rooms in 15 plants processing a variety of foods were studied. These included plants processing raw meat and salads, Chinese ready meals, dairy products, slicing and packing of cooked meats and catering establishments. An initial survey of total numbers of microbes at a total of 891 sites on evaporators, drip trays and chilled room walls was followed up with a more detailed examination of 336 sites with high counts, selecting for Listeria spp., coliforms, enterococci, Staphylococcus aureus and Bacillus cereus. Temperatures (particularly air on and air off, maximum and near defrost heaters) relative humidity, airflow, layout and cleaning regimes were surveyed. In general, no correlation could be found between any of the physical measurements and the numbers and types of bacteria detected. Maximum mean temperatures in the chilled rooms varied from -1 to +16.9 °C and few chilled units were regularly cleaned. Twenty five percent of sites examined had more than 105 colony-forming units per cm2, although, very few pathogens or faecal indicator bacteria were detected. Listeria spp. were not found and coliforms were found only once, in low numbers. Low numbers of S. aureus or B. cereus were present in 9 of the 15 plants, B. cereus was found on evaporators and associated drip trays in two catering plants and two plants processing cooked meat. Enterococci and S. aureus were found most frequently in a raw red meat slaughterhouse (always in low numbers). In general, microbial contamination was lower in rooms where wrapped rather than unwrapped products were stored. The type of product also affected the degree of contamination, with raw red meat and poultry or dry ingredients giving highest counts, and raw vegetables and cooked products lowest. The work demonstrated that bacteria were present on evaporator cooling coils in all factory cold rooms visited. Although evaporator-cleaning procedures were carried out in some factories as part of routine maintenance these were not shown to be effective at maintaining low levels of bacteria on evaporators. To maintain evaporator hygiene it is suggested that more regular cleaning procedures, possibly by means of automated cleansing systems, should be considered. © 2003 Elsevier Ltd. All rights reserved

    Humidification of unwrapped chilled meat on retail display using an ultrasonic fogging system.

    Get PDF
    The effects of an ultrasonic humidification system on unwrapped meat in a chilled retail display cabinet were assessed. Humidification raised the relative humidity of the cabinet air from a mean of 76.7% to just below saturation at 98.8%. This reduced the mean evaporative weight loss from whole samples of meat after 14h from 1.68% to 0.62% of their initial weight. The rate of deterioration in the appearance of the meat due to dehydration was reduced to the extent that while the unhumidified trial was terminated after 14h because all samples were judged to be unacceptable, the humidified trial was continued for 24h without any major changes in appearance. Levels of presumptive pseudomonas bacteria were relatively high in water samples taken from the humidification system and defrost water during the humidified trial, but Legionella spp. were not isolated. Significant increases in the numbers of bacteria on the meat during either trial were only found in one case, that of humidified minced beef. However, some of the samples had high counts even before display, and this may have masked any effect due to humidification. Differences in levels of air-borne contamination were small and inconsistent. Air temperatures were raised by humidification by between 1 and 2°C and this was reflected in similarly raised product temperatures. Temperatures of air leaving the evaporator indicated that this was due to icing of the evaporator in the periods leading up to defrosts

    Post-mortem volatiles of vertebrate tissue

    Get PDF
    Volatile emission during vertebrate decay is a complex process that is understood incompletely. It depends on many factors. The main factor is the metabolism of the microbial species present inside and on the vertebrate. In this review, we combine the results from studies on volatile organic compounds (VOCs) detected during this decay process and those on the biochemical formation of VOCs in order to improve our understanding of the decay process. Micro-organisms are the main producers of VOCs, which are by- or end-products of microbial metabolism. Many microbes are already present inside and on a vertebrate, and these can initiate microbial decay. In addition, micro-organisms from the environment colonize the cadaver. The composition of microbial communities is complex, and communities of different species interact with each other in succession. In comparison to the complexity of the decay process, the resulting volatile pattern does show some consistency. Therefore, the possibility of an existence of a time-dependent core volatile pattern, which could be used for applications in areas such as forensics or food science, is discussed. Possible microbial interactions that might alter the process of decay are highlighted

    Fresh, preserved and extended shelf-life foods

    No full text

    Food microbiology: general principles

    No full text

    Meat and Poultry

    No full text

    Quality Assurance of laboratory performance

    No full text

    Zoonoses in the meat industry: a review

    No full text
    corecore