18,012 research outputs found
HD60532, a planetary system in a 3:1 mean motion resonance
In a recent paper it was reported a planetary system around the star HD60532,
composed by two giant planets in a possible 3:1 mean motion resonance, that
should be confirmed within the next decade. Here we show that the analysis of
the global dynamics of the system allows to confirm this resonance. The present
best fit to data already corresponds to this resonant configuration and the
system is stable for at least 5Gry. The 3:1 resonance is so robust that
stability is still possible for a wide variety of orbital parameters around the
best fit solution and also if the inclination of the system orbital plane with
respect to the plane of the sky is as small as 15 deg. Moreover, if the
inclination is taken as a free parameter in the adjustment to the observations,
we find an inclination ~ 20 deg, which corresponds to M_b =3.1 M_Jup and M_c =
7.4 M_Jup for the planetary companions.Comment: 4 Pages, 4 Figures, accepted by A&
Investigation of otolith responses using ground based vestibular research facility
The general goal was to examine tilt sensitivity of horizontal semicircular canal afferents. Computer programs were tested which controlled the short axis centrifuge at the Vestibular Research Facility, acquired action potentials and produced data reduction analyses including histograms and gain and phase calculations. A pre-amplifier was also developed for the acquisition of action potentials. The data were gathered that can be used to contribute toward the understanding of the tilt sensitivity of semicircular canal afferents in the unanesthetized gerbil preparation
Resonance breaking due to dissipation in planar planetary systems
We study the evolution of two planets around a star, in mean-motion resonance
and undergoing tidal effect. We derive an integrable analytical model of
mean-motion resonances of any order which reproduce the main features of the
resonant dynamics. Using this simplified model, we obtain a criterion showing
that depending on the balance of the tidal dissipation in both planets, their
final period ratio may stay at the resonant value, increase above, or decrease
below the resonant value.
Applying this criterion to the two inner planets orbiting GJ163, we deduce
that the current period ratio (2.97) could be the outcome of dissipation in the
3:1 MMR provided that the innermost planet is gaseous (slow dissipation) while
the second one is rocky (faster dissipation). We perform N-body simulations
with tidal dissipation to confirm the results of our analytical model.
We also apply our criterion on GJ581b, c (5:2 MMR) and reproduce the current
period ratio (2.4) if the inner planet is gaseous and the outer is rocky (as
for GJ163).
Finally, we apply our model to the Kepler mission's statistics. We show that
the excess of planets pairs close to first order MMR but in external
circulation, i.e., with period ratios P_out/P_in > (p+1)/p for the resonance
(p+1):p, can be reproduced by tidal dissipation in the inner planet. There is
no need for any other dissipative mechanism, provided that these systems left
the resonance with non-negligible eccentricities.Comment: 14 pages, 9 figures, submitted for publicatio
Anisotropic simplicial minisuperspace model
The computation of the simplicial minisuperspace wavefunction in the case of
anisotropic universes with a scalar matter field predicts the existence of a
large classical Lorentzian universe like our own at late timesComment: 19 pages, Latex, 6 figure
On the equilibrium rotation of Earth-like extra-solar planets
The equilibrium rotation of tidally evolved "Earth-like" extra-solar planets
is often assumed to be synchronous with their orbital mean motion. The same
assumption persisted for Mercury and Venus until radar observations revealed
their true spin rates. As many of these planets follow eccentric orbits and are
believed to host dense atmospheres, we expect the equilibrium rotation to
differ from the synchronous motion. Here we provide a general description of
the allowed final equilibrium rotation states of these planets, and apply this
to already discovered cases in which the mass is lower than twelve
Earth-masses. At low obliquity and moderate eccentricity, it is shown that
there are at most four distinct equilibrium possibilities, one of which can be
retrograde. Because most presently known "Earth-like" planets present eccentric
orbits, their equilibrium rotation is unlikely to be synchronous.Comment: 4 pages, 2 figures. accepted for publication in Astronomy and
Astrophysics. to be published in Astronomy and Astrophysic
Kinematics nomenclature for physiological accelerations with special reference to vestibular applications
Kinematics nomenclature for physiological accelerations and special reference to vestibular apparatu
Elicitation of horizontal nystagmus by periodic linear acceleration
Horizontal nystagmus elicitation in man by periodic linear acceleratio
Effect of the curing time on the numerical modelling of the behaviour of a chemically stabilised soft soil
The ability of the Modified Cam Clay (MCC) model combined with the Von Mises (VM) model, considering the effect of curing time on the enhancement of the mechanical properties of a chemically stabilised soft soil is examined. The evolution of the strength and stiffness over time is based on the results of undrained compressive strength (UCS) tests carried out for different curing times (from 28 days to 360 days). Initially, the MCC/VM models associated with the effect of curing time are validated by CIU triaxial tests, for curing times of 28 and 90 days. Finally, the behaviour of an embankment built on a soft soil reinforced with deep mixing columns is predicted based on the previously validated models. The results show that the increase of curing time of the DMCs slightly decreases the settlement obtained with a curing time of 28 days
- …