5 research outputs found
On the Influence of Spatial Dispersion on the Performance of Graphene-Based Plasmonic Devices
We investigate the effect of spatial dispersion phenomenon on the performance
of graphene-based plasmonic devices at THz. For this purpose, two different
components, namely a phase shifter and a low-pass filter, are taken from the
literature, implemented in different graphene-based host waveguides, and
analyzed as a function of the surrounding media. In the analysis, graphene
conductivity is modeled first using the Kubo formalism and then employing a
full- model which accurately takes into account spatial dispersion. Our
study demonstrates that spatial dispersion up-shifts the frequency response of
the devices, limits their maximum tunable range, and degrades their frequency
response. Importantly, the influence of this phenomenon significantly increases
with higher permittivity values of the surrounding media, which is related to
the large impact of spatial dispersion in very slow waves. These results
confirm the necessity of accurately assessing non-local effects in the
development of practical plasmonic THz devices.Comment: 5 pages, 18 figures, 2 table
Lowpass lter design for space applications in waveguide technology using alternative topologies
The main goal of this project is to study the possibility of utilizing
topologies based on curved surfaces (metallic posts) to realize low pass lters
in waveguide technologies, as an alternative to the traditional implementation
based on rectangular irises, in order to obtain devices that present a higher
multipaction threshold. In the rst chapters, the theoretical synthesis
techniques utilized are explained. Understanding the synthesis of the di erent
types of lter polynomials and prototype networks is necessary in order to
precisely design lters with a predictable frequency response. The commercial
package HFSS will be used for the design and veri cation of the lters,
controlling its operation with scripts in order to automate the design process.Escuela Técnica Superior de Ingeniería de TelecomunicaciónUniversidad Politécnica de Cartagen
Filtros plasmónicos reconfigurables y fenómenos de dispersión espacial en tecnología de grafeno en la banda de terahercios
[ENG]The exceptional electrooptical, thermal, and mechanical properties of graphene has motivated an enormous interest from
the scienti c community in a wide variety of elds in recent years. In particular, the capability of mono- and multilayer
graphene to support highly con ned recon gurable surface plasmon polaritons in the terahertz (THz) and infrared
regime has motivated an explosive growth of graphene plasmonics, a discipline which is paving the way towards fully
integrated THz transceivers and sensing systems. In this project, we rst present the novel design and analysis of planar
recon gurable THz lters hosted in graphene nanoribbons, which are e ciently designed taking advantage of the quasistatic
nature of graphene surface plasmon polaritons (SPPs) in nanostructures and graphene's eld e ect. The proposed
lters are highly miniaturized and present recon guration capabilities not possible with other technologies in the THz
band. Spatial dispersion in graphene sheets is then reviewed. This e ect is closely related to the quantum capacitance of
graphene and strongly a ects surface wave propagation under certain circumstances. This phenomenon is studied in the
THz and near infrared frequency bands, and accurate equivalent circuits that provide deep physical insight and simplify
design tasks are developed. The practical implications of spatial dispersion regarding THz graphene-based plasmonic
devices like the lters mentioned above are discussed.[SPA]Las excepcionales propiedades térmicas, mecánicas y electro-ópticas del grafeno han atraído un enorme interés de las
comunidades cientí cas de diversas áreas en los últimos años. La capacidad del grafeno de soportar la excitación y
propagación de plasmones de super cie en la bandas de terahercios (THz) e infrarrojos han motivado un crecimiento
explosivo del estado del arte en cienca y tecnología de plasmones en estas bandas de frecuencias, una disciplina que
podría ser crucial para el futuro desarrollo de sistemas integrados y altamente miniaturizados de comunicación, detección
y sensores. En este proyecto, se presenta en primer lugar la síntesis y análisis de ltros planares recon gurables en la
banda de THz mediante control electrostático de plasmones en tiras de grafeno. Se ha desarrollado una técnica de diseño
e ciente, explotando la naturaleza cuasi-estática de este tipo de ondas electromagnéticas en tiras de ancho mucho menor
que la longitud de onda. Se ilustra el rendimiento de estos ltros con múltiples ejemplos, demostrando capacidades de
recon guración que no son posibles con otras tecnologías.
Posteriormente se estudia de forma analítica el fenómeno de dispersión espacial en guías de onda mono- y multicapa de
grafeno. Se establece una conexión entre este fenómeno y la capacidad cuántica intrínseca del material, y se estudia cómo
afecta a las propiedades electromagneticas del grafeno en la banda de THz. Se han desarrollado circuitos equivalentes
capaces de modelar la propagación de plasmones en estas estructuras, proporcionando una importante comprensión de
los diferentes mecanismos de propagación una herramienta útil para el diseño de dispositivos. Por último, se analizan
mediante ejemplos numéricos las implicaciones prácticas de la dispersión espacial en la respuesta de los filtros diseñados.Escuela Técnica Superior de Ingeniería de TelecomunicaciónUniversidad Politécnica de CartagenaUniversidad Politécnica de Cartagen
Spatially Dispersive Graphene Single and Parallel Plate Waveguides: Analysis and Circuit Model
The propagation of surface waves along spatially dispersive graphene-based 2-D waveguides is investigated in detail. Graphene is characterized using a full-k(rho) conductivity model under the relaxation-time approximation, which allows to obtain analytical and closed-formed expressions for the wavenumber of plasmons supported by sheets and parallel plate waveguides, respectively. Per unit length equivalent circuits are introduced to accurately characterize the propagation in different waveguides, and analytical relations between the effective TM-mode circuit lumped elements and graphene conductivity are derived. The proposed circuits allow identifying the different mechanisms involved in spatially dispersive plasmon propagation, explaining their connection with the intrinsic properties of graphene. Results demonstrate that spatial dispersion, which significantly decreases the confinement and the losses of slow surface plasmons, must be accurately assessed in the design of graphene-based plasmonic components at millimeter-waves and low terahertz frequencies
Graphene-Based Plasmonic Tunable Low-Pass Filters in the Terahertz Band
We propose the concept, synthesis, analysis, and design of graphene-based plasmonic tunable low-pass filters operating in the terahertz band. The proposed structure is composed of a graphene strip transferred onto a dielectric and a set of polysilicon dc gating pads located beneath it. This structure implements a stepped impedance low-pass filter for the propagating surface plasmons by adequately controlling the guiding properties of each strip section through graphene's field effect. A synthesis procedure is presented to design filters with desired specifications in terms of cutoff frequency, in-band performance, and rejection characteristics. The electromagnetic modeling of the structure is efficiently performed by combining an electrostatic scaling law to compute the guiding features of each strip section with a transmission line and transfer-matrix framework, approach further validated via full-wave simulations. The performance of the proposed filters is evaluated in practical scenarios, taking into account the presence of the gating bias and the influence of graphene's losses. These results, together with the high miniaturization associated with plasmonic propagation, are very promising for the future use and integration of the proposed filters with other graphene and silicon-based elements in innovative terahertz communication systems