9,443 research outputs found
Procedimentos e aspectos necessários para a análise da relação força/EMG do músculo quadríceps femoral avaliado em condição isométrica e dinâmica
The electromyography (EMG) has been used as a resource related to clinical interventions, as well as control of the adjustments resulting from physical training, especially the muscular strength. The muscular electrical activity allows the investigation of which muscles are used in a motion, the level of muscle activation during the course of movement, intensity and duration of muscular demand. Due to the great usefulness of the study of muscle electrical signal and its complex relationship with the force production, both the relation to physiological and non physiological aspects as well as the procedures needed for the collection of EMG signal in isometric and dynamic activity took place this review. Therefore, the EMG signal presents relation with the strength production of the knee extensor muscles. This relationship has been better demonstrated in isometric assessments than in dynamic conditions, what stimulates further scientific production in this area to better understand and explain the relationship of the contraction dynamics, the production of force and changes in EMG signal and improve their applicability not only in the scientific scope, but in clinical tool, since the dynamic activities are similar to the sports gestures and activities of daily living
Ladders for Wilson Loops Beyond Leading Order
We set up a general scheme to resum ladder diagrams for the quark-anti-quark
potential in N=4 super-Yang-Mills theory, and do explicit calculations at the
next-to-leading order. The results perfectly agree with string theory in
AdS(5)xS(5) when continued to strong coupling, in spite of a potential
order-of-limits problem.Comment: 18 pages, 5 figure
The quark anti-quark potential and the cusp anomalous dimension from a TBA equation
We derive a set of integral equations of the TBA type for the generalized
cusp anomalous dimension, or the quark antiquark potential on the three sphere,
as a function of the angles. We do this by considering a family of local
operators on a Wilson loop with charge L. In the large L limit the problem can
be solved in terms of a certain boundary reflection matrix. We determine this
reflection matrix by using the symmetries and the boundary crossing equation.
The cusp is introduced through a relative rotation between the two boundaries.
Then the TBA trick of exchanging space and time leads to an exact equation for
all values of L. The L=0 case corresponds to the cusped Wilson loop with no
operators inserted. We then derive a slightly simplified integral equation
which describes the small angle limit. We solve this equation up to three loops
in perturbation theory and match the results that were obtained with more
direct approaches.Comment: 63 pages, 12 figures. v2: references added, typos correcte
Use of flight interception traps of Malaise type and attractive traps for social wasps record (Vespidae: Polistinae)
The literature provides different methodologies for sampling social
wasps, including, flight intercept trap type Malaise and Attractive
trap, however, there is no consensus on its use. In this respect, the
aim of this study was to evaluate the best use of Malaise traps and
Attractive trap in biodiversity work of social wasps, and generate a
collection protocol for the use of these traps. The study was conducted
in the Parque Estadual do Rio Doce, located in the east of the state
of Minas Gerais, in the years 2000, 2001, 2002 and 2004 and in the
Botanical Garden of the Federal University of Juiz de Fora, located in
the southeastern state of Minas Gerais, in years 2011, 2012 and 2013.
15 species were collected using Malaise traps, and, 26 species of social
wasps were collected using Attractive traps. Although the negative
aspects of both traps, complementary methodologies surveys varying
social wasps are useful and it is recommended to choose for using in
accordance with the logistical field
Negative-energy perturbations in cylindrical equilibria with a radial electric field
The impact of an equilibrium radial electric field on negative-energy
perturbations (NEPs) (which are potentially dangerous because they can lead to
either linear or nonlinear explosive instabilities) in cylindrical equilibria
of magnetically confined plasmas is investigated within the framework of
Maxwell-drift kinetic theory. It turns out that for wave vectors with a
non-vanishing component parallel to the magnetic field the conditions for the
existence of NEPs in equilibria with E=0 [G. N. Throumoulopoulos and D.
Pfirsch, Phys. Rev. E 53, 2767 (1996)] remain valid, while the condition for
the existence of perpendicular NEPs, which are found to be the most important
perturbations, is modified. For ( is the
electrostatic potential) and ( is
the total plasma pressure), a case which is of operational interest in magnetic
confinement systems, the existence of perpendicular NEPs depends on ,
where is the charge of the particle species . In this case the
electric field can reduce the NEPs activity in the edge region of tokamaklike
and stellaratorlike equilibria with identical parabolic pressure profiles, the
reduction of electron NEPs being more pronounced than that of ion NEPs.Comment: 30 pages, late
Remarkable magnetostructural coupling around the magnetic transition in CeCoFeSi
We report a detailed study of the magnetic properties of
CeCoFeSi under high magnetic fields (up to 16 Tesla)
measuring different physical properties such as specific heat, magnetization,
electrical resistivity, thermal expansion and magnetostriction.
CeCoFeSi becomes antiferromagnetic at 6.7 K.
However, a broad tail (onset at 13 K) in the specific heat
precedes that second order transition. This tail is also observed in the
temperature derivative of the resistivity. However, it is particularly
noticeable in the thermal expansion coefficient where it takes the form of a
large bump centered at . A high magnetic field practically washes out that
tail in the resistivity. But surprisingly, the bump in the thermal expansion
becomes a well pronounced peak fully split from the magnetic transition at
. Concurrently, the magnetoresistance also switches from negative to
positive just below . The magnetostriction is considerable and
irreversible at low temperature (
410 at 2 K) when the magnetic interactions dominate. A broad
jump in the field dependence of the magnetostriction observed at low may be
the signature of a weak ongoing metamagnetic transition. Taking altogether, the
results indicate the importance of the lattice effects in the development of
the magnetic order in these alloys.Comment: 5 pages, 6 figure
Agua de lastre y especies exóticas
El agua que los navíos embarcan como lastre cuando deben atravesar el océano sin carga suele contener organismos vivos. Al ser descargada aquella, estos ingresan en un medio al que son ajenos y pueden convertirse en plagas y en muchos casos originan serios trastornos ambientales. Los organismos descargados son especies exóticas. Se muestra un estudio en 5 puertos argentinos (océano Atlántico sudoccidental), formas de mitigar los trastornos y el estado de la situación actual de la problemática, con lecturas sugeridas
Analytic Solution of Bremsstrahlung TBA
We consider the quark--anti-quark potential on the three sphere or the
generalized cusp anomalous dimension in planar N=4 SYM. We concentrate on the
vacuum potential in the near BPS limit with units of R-charge.
Equivalently, we study the anomalous dimension of a super-Wilson loop with L
local fields inserted at a cusp. The system is described by a recently proposed
infinite set of non-linear integral equations of the Thermodynamic Bethe Ansatz
(TBA) type. That system of TBA equations is very similar to the one of the
spectral problem but simplifies a bit in the near BPS limit. Using techniques
based on the Y-system of functional equations we first reduced the infinite
system of TBA equations to a Finite set of Nonlinear Integral Equations
(FiNLIE). Then we solve the FiNLIE system analytically, obtaining a simple
analytic result for the potential! Surprisingly, we find that the system has
equivalent descriptions in terms of an effective Baxter equation and in terms
of a matrix model. At L=0, our result matches the one obtained before using
localization techniques. At all other L's, the result is new. Having a new
parameter, L, allows us to take the large L classical limit. We use the matrix
model description to solve the classical limit and match the result with a
string theory computation. Moreover, we find that the classical string
algebraic curve matches the algebraic curve arising from the matrix model.Comment: 50 pages, 5 figures. v2: references added, JHEP versio
Negative-Energy Perturbations in Circularly Cylindrical Equilibria within the Framework of Maxwell-Drift Kinetic Theory
The conditions for the existence of negative-energy perturbations (which
could be nonlinearly unstable and cause anomalous transport) are investigated
in the framework of linearized collisionless Maxwell-drift kinetic theory for
the case of equilibria of magnetically confined, circularly cylindrical plasmas
and vanishing initial field perturbations. For wave vectors with a
non-vanishing component parallel to the magnetic field, the plane equilibrium
conditions (derived by Throumoulopoulos and Pfirsch [Phys Rev. E {\bf 49}, 3290
(1994)]) are shown to remain valid, while the condition for perpendicular
perturbations (which are found to be the most important modes) is modified.
Consequently, besides the tokamak equilibrium regime in which the existence of
negative-energy perturbations is related to the threshold value of 2/3 of the
quantity , a new
regime appears, not present in plane equilibria, in which negative-energy
perturbations exist for {\em any} value of . For various analytic
cold-ion tokamak equilibria a substantial fraction of thermal electrons are
associated with negative-energy perturbations (active particles). In
particular, for linearly stable equilibria of a paramagnetic plasma with flat
electron temperature profile (), the entire velocity space is
occupied by active electrons. The part of the velocity space occupied by active
particles increases from the center to the plasma edge and is larger in a
paramagnetic plasma than in a diamagnetic plasma with the same pressure
profile. It is also shown that, unlike in plane equilibria, negative-energy
perturbations exist in force-free reversed-field pinch equilibria with a
substantial fraction of active particles.Comment: 31 pages, late
- …