5 research outputs found
Green Synthesis of Gold Nanoparticles with Curcumin or Açai in the Tissue Repair of Palatal Wounds
This study aimed to evaluate and compare the effects of treatment with gold nanoparticles (GNPs) reduced with Curcumin (Curcuma longa L.) or Açai (Euterpe oleracea) to a standard commercial treatment of the pharmacological type (Omcilon®) and an electrophysical agent (photobiomodulation) in the palatal wounds of rats. As for the in vitro assay, a cell viability test was performed to assess the toxicity of the synthesized nanoparticles. In vivo assay: 60 Wistar rats were divided into five groups (n = 12): I. Palatal Wound (PW); II. PW + Photobiomodulation (PBM); III. PW + Omcilon®; IV. PW + GNPs-Cur (0.025 mg/mL); V. PW + GNPs-Açai (0.025 mg/mL). Animals were first anesthetized, and circular lesions in the palatine mucosa were induced using a 4 mm-diameter punch. The first treatment session started 24 h after the injury and occurred daily for 5 days. The animals were euthanized, and the palatal mucosa tissue was removed for histological, biochemical, and molecular analysis. GNPs-Açai were able to significantly reduce pro-inflammatory cytokines and increase anti-inflammatory ones, reduce oxidant markers, and reduce inflammatory infiltrate while increasing the collagen area and contraction rate of the wound, along with an improved visual qualification. The present study demonstrated that the proposed therapies of GNPs synthesized greenly, thus associating their effects with those of plants, favor the tissue repair process in palatal wounds
Microcurrent and Gold Nanoparticles Combined with Hyaluronic Acid Accelerates Wound Healing
This study aimed to investigate the effects of iontophoresis and hyaluronic acid (HA) combined with a gold nanoparticle (GNP) solution in an excisional wound model. Fifty Wistar rats (n = 10/group) were randomly assigned to the following groups: excisional wound (EW); EW + MC; EW + MC + HA; EW + MC + GNPs; and EW + MC + HA + GNPs. The animals were induced to a circular excision, and treatment started 24 h after injury with microcurrents (300 µA) containing gel with HA (0.9%) and/or GNPs (30 mg/L) in the electrodes (1 mL) for 7 days. The animals were euthanized 12 h after the last treatment application. The results demonstrate a reduction in the levels of pro-inflammatory cytokines (IFNϒ, IL-1β, TNFα, and IL-6) in the group in which the therapies were combined, and they show increased levels of anti-inflammatory cytokines (IL-4 and IL-10) and growth factors (FGF and TGF-β) in the EW + MC + HA and EW + MC + HA + GNPs groups. As for the levels of dichlorofluorescein (DCF) and nitrite, as well as oxidative damage (carbonyl and sulfhydryl), they decreased in the combined therapy group when compared to the control group. Regarding antioxidant defense, there was an increase in glutathione (GSH) and a decrease in superoxide dismutase (SOD) in the combined therapy group. A histological analysis showed reduced inflammatory infiltrate in the MC-treated groups and in the combination therapy group. There was an increase in the wound contraction rate in all treated groups when compared to the control group, proving that the proposed therapies are effective in the epithelial healing process. The results of this study demonstrate that the therapies in combination favor the tissue repair process more significantly than the therapies in isolation
Resumos em andamento - Bioquímica
Resumos em andamento - Bioquímic
Resumos concluídos - Bioquímica
Resumos concluídos - Bioquímic
Resumos concluídos - Bioquímica
Resumos concluídos - Bioquímic