14 research outputs found

    Simplified Mathematical Model for Computing Draining Operations in Pipelines of Undulating Profiles with Vacuum Air Valves

    Get PDF
    [EN] The draining operation involves the presence of entrapped air pockets, which are expanded during the phenomenon occurrence generating drops of sub-atmospheric pressure pulses. Vacuum air valves should inject enough air to prevent sub-atmospheric pressure conditions. Recently, this phenomenon has been studied by the authors with an inertial model, obtaining a complex formulation based on a system composed by algebraic-di erential equations. This research simplifies this complex formulation by neglecting the inertial term, thus the Bernoulli¿s equation can be used. Results show how the inertial model and the simplified mathematical model provide similar results of the evolution of main hydraulic and thermodynamic variables. The simplified mathematical model is also verified using experimental tests of air pocket pressure, water velocity, and position of the water column.Coronado-Hernández, ÓE.; Fuertes-Miquel, VS.; Quiñones-Bolaños, EE.; Gatica, G.; Coronado-Hernández, JR. (2020). Simplified Mathematical Model for Computing Draining Operations in Pipelines of Undulating Profiles with Vacuum Air Valves. Water. 12(9):1-12. https://doi.org/10.3390/w12092544S112129Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Mora-Meliá, D., & Iglesias-Rey, P. L. (2019). Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review. Urban Water Journal, 16(4), 299-311. doi:10.1080/1573062x.2019.1669188Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Iglesias-Rey, P. L., & Mora-Meliá, D. (2018). Transient phenomena during the emptying process of a single pipe with water–air interaction. Journal of Hydraulic Research, 57(3), 318-326. doi:10.1080/00221686.2018.1492465Tijsseling, A. S., Hou, Q., Bozkuş, Z., & Laanearu, J. (2015). Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. Journal of Pressure Vessel Technology, 138(3). doi:10.1115/1.4031508Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Besharat, M., & Ramos, H. M. (2018). Subatmospheric pressure in a water draining pipeline with an air pocket. Urban Water Journal, 15(4), 346-352. doi:10.1080/1573062x.2018.1475578Ramezani, L., Karney, B., & Malekpour, A. (2016). Encouraging Effective Air Management in Water Pipelines: A Critical Review. Journal of Water Resources Planning and Management, 142(12), 04016055. doi:10.1061/(asce)wr.1943-5452.0000695Zhou, L., & Liu, D. (2013). Experimental investigation of entrapped air pocket in a partially full water pipe. Journal of Hydraulic Research, 51(4), 469-474. doi:10.1080/00221686.2013.785985Carlos, M., Arregui, F. J., Cabrera, E., & Palau, C. V. (2011). Understanding Air Release through Air Valves. Journal of Hydraulic Engineering, 137(4), 461-469. doi:10.1061/(asce)hy.1943-7900.0000324Bianchi, A., Mambretti, S., & Pianta, P. (2007). Practical Formulas for the Dimensioning of Air Valves. Journal of Hydraulic Engineering, 133(10), 1177-1180. doi:10.1061/(asce)0733-9429(2007)133:10(1177)Ramezani, L., Karney, B., & Malekpour, A. (2015). The Challenge of Air Valves: A Selective Critical Literature Review. Journal of Water Resources Planning and Management, 141(10), 04015017. doi:10.1061/(asce)wr.1943-5452.0000530Coronado-Hernández, O., Fuertes-Miquel, V., Besharat, M., & Ramos, H. (2017). Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves. Water, 9(2), 98. doi:10.3390/w9020098Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., … van’t Westende, J. M. C. (2012). Emptying of Large-Scale Pipeline by Pressurized Air. Journal of Hydraulic Engineering, 138(12), 1090-1100. doi:10.1061/(asce)hy.1943-7900.0000631Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Iglesias-Rey, P. L., & Martínez-Solano, F. J. (2018). Rigid Water Column Model for Simulating the Emptying Process in a Pipeline Using Pressurized Air. Journal of Hydraulic Engineering, 144(4), 06018004. doi:10.1061/(asce)hy.1943-7900.0001446Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Iglesias-Rey, P. L., & Martínez-Solano, F. J. (2020). Closure to «Rigid Water Column Model for Simulating the Emptying Process in a Pipeline Using Pressurized Air» by Oscar E. Coronado-Hernández, Vicente S. Fuertes-Miquel, Pedro L. Iglesias-Rey, and Francisco J. Martínez-Solano. Journal of Hydraulic Engineering, 146(3), 07020002. doi:10.1061/(asce)hy.1943-7900.0001681Vasconcelos, J. G., & Wright, S. J. (2008). Rapid Flow Startup in Filled Horizontal Pipelines. Journal of Hydraulic Engineering, 134(7), 984-992. doi:10.1061/(asce)0733-9429(2008)134:7(984)Vasconcelos, J. G., Klaver, P. R., & Lautenbach, D. J. (2014). Flow regime transition simulation incorporating entrapped air pocket effects. Urban Water Journal, 12(6), 488-501. doi:10.1080/1573062x.2014.881892Wang, L., Wang, F., & Lei, X. (2018). Investigation on friction models for simulation of pipeline filling transients. Journal of Hydraulic Research, 56(6), 888-895. doi:10.1080/00221686.2018.1434693Malekpour, A., Karney, B. W., & Nault, J. (2016). Physical Understanding of Sudden Pressurization of Pipe Systems with Entrapped Air: Energy Auditing Approach. Journal of Hydraulic Engineering, 142(2), 04015044. doi:10.1061/(asce)hy.1943-7900.0001067Coronado-Hernández, Ó. E., Fuertes-Miquel, V. S., Mora-Meliá, D., & Salgueiro, Y. (2020). Quasi-static Flow Model for Predicting the Extreme Values of Air Pocket Pressure in Draining and Filling Operations in Single Water Installations. Water, 12(3), 664. doi:10.3390/w12030664Leon, A. S., Ghidaoui, M. S., Schmidt, A. R., & Garcia, M. H. (2010). A robust two-equation model for transient-mixed flows. Journal of Hydraulic Research, 48(1), 44-56. doi:10.1080/0022168090356591

    Sensitivity of Empirical Equation Parameters for the Calculation of Time of Concentration in Urbanized Watersheds

    Get PDF
    settingsOrder Article Reprints Open AccessArticle Sensitivity of Empirical Equation Parameters for the Calculation of Time of Concentration in Urbanized Watersheds by Jamilton Echeverri-Díaz 1,Óscar E. Coronado-Hernández 2,*ORCID,Gustavo Gatica 3ORCID,Rodrigo Linfati 4ORCID,Rafael D. Méndez-Anillo 2 andJairo R. Coronado-Hernández 5ORCID 1 Departamento de Recursos Hídricos, Sertet SAS, Montería 230002, Colombia 2 Facultad de Ingeniería, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia 3 Faculty of Engineering—CIS, Universidad Andres Bello, Santiago de Chile 7500971, Chile 4 Department of Industrial Engineering, Universidad del Bío-Bío, Concepción 4030000, Chile 5 Departamento de Productividad e Innovación, Universidad de la Costa, Barranquilla 080001, Colombia * Author to whom correspondence should be addressed. Water 2022, 14(18), 2847; https://doi.org/10.3390/w14182847 Received: 17 August 2022 / Revised: 5 September 2022 / Accepted: 9 September 2022 / Published: 13 September 2022 (This article belongs to the Section Urban Water Management) Download Browse Figures Review Reports Versions Notes Abstract The time of concentration is the time it takes a drop of water in a basin to travel from the most distant point to the outlet, and is one of the most important parameters, along with the morphometric characteristics, for determining the design flow rate in rainfall-runoff models. This study aims to determine the sensitivity of the parameters included in different equations for the calculation of the time of concentration. A case study was conducted on small, urbanized watersheds in the city of Montería, Colombia. The study uses information obtained through field work using GPS equipment and electronic total station, supplemented by geographic information contained in the city drawings of the local sewage company, which includes data on elevations above sea level with sub-metric precision. The time of concentration determined by the 12 empirical equations was compared to the results obtained from the equation proposed by the Natural Resources Conservation Service (NRCS), which was considered as a baseline formulation for the intricacy of calculation. Based on this comparison, it was found that the Carter equation is the one that best fits the results obtained from the NRCS equation because it displayed highly significant goodness of fit values. Even though the equations by Kirpich, Ventura, California Culvert Practice, Simas-Hawkins and TxDOT provide a relatively good fit compared to other empirical equations, they tend to over-estimate time of concentration values, which could lead to the under-estimation of the design flow rates. For this reason, sensitivity analysis of the parameters of these equations represents an alternative for improving the calculation of the time of concentration. The current research analyses deepen the influence of some parameters in the estimation of time of concentration. The research can also be used by designers and engineers in the city of Montería, Colombia, as an important reference to compute time of concentrations in urbanized watersheds

    Quasi-static Flow Model for Predicting the Extreme Values of Air Pocket Pressure in Draining and Filling Operations in Single Water Installations

    Get PDF
    [EN] Inertial models have been used by researchers to simulate the draining and filling processes in water pipelines, based on the evolution of the main hydraulic and thermodynamic variables. These models use complex differential equations, which are solved using advanced numerical codes. In this study, a quasi-static flow model is developed to study these operations in hydraulic installations. The quasi-static flow model represents a simplified formulation compared with inertial flow models, in which its numerical resolution is easier because only algebraic equations must be addressed. Experimental measurements of air pocket pressure patterns were conducted in a 4.36 m long single pipeline with an internal diameter of 42 mm. Comparisons between measured and computed air pocket pressure oscillations indicate how the quasi-static flow model can predict extreme values of air pocket pressure for experimental runs, demonstrating the possibility of selecting stiffness and pipe classes in actual pipelines using this model. Two case studies were analysed to determine the behaviour of the quasi-static flow model in large water pipelines.This research and the APC were funded by the Comision Nacional de Investigacion Cientifica y Tecnologica (Conicyt), grant number 1180660.Coronado-Hernández, ÓE.; Fuertes-Miquel, VS.; Mora-Meliá, D.; Salgueiro, Y. (2020). Quasi-static Flow Model for Predicting the Extreme Values of Air Pocket Pressure in Draining and Filling Operations in Single Water Installations. Water. 12(3):1-16. https://doi.org/10.3390/w12030664S116123Abreu, J., Cabrera, E., Izquierdo, J., & García-Serra, J. (1999). Flow Modeling in Pressurized Systems Revisited. Journal of Hydraulic Engineering, 125(11), 1154-1169. doi:10.1061/(asce)0733-9429(1999)125:11(1154)Izquierdo, J., Fuertes, V. S., Cabrera, E., Iglesias, P. L., & Garcia-Serra, J. (1999). Pipeline start-up with entrapped air. Journal of Hydraulic Research, 37(5), 579-590. doi:10.1080/00221689909498518Simpson, A. R., & Wylie, E. B. (1991). Large Water‐Hammer Pressures for Column Separation in Pipelines. Journal of Hydraulic Engineering, 117(10), 1310-1316. doi:10.1061/(asce)0733-9429(1991)117:10(1310)Zhou, L., Liu, D., Karney, B., & Wang, P. (2013). Phenomenon of White Mist in Pipelines Rapidly Filling with Water with Entrapped Air Pockets. Journal of Hydraulic Engineering, 139(10), 1041-1051. doi:10.1061/(asce)hy.1943-7900.0000765Zhou, L., & Liu, D. (2013). Experimental investigation of entrapped air pocket in a partially full water pipe. Journal of Hydraulic Research, 51(4), 469-474. doi:10.1080/00221686.2013.785985Coronado-Hernández, O., Fuertes-Miquel, V., Besharat, M., & Ramos, H. (2017). Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves. Water, 9(2), 98. doi:10.3390/w9020098Coronado-Hernández, Ó. E., Besharat, M., Fuertes-Miquel, V. S., & Ramos, H. M. (2019). Effect of a Commercial Air Valve on the Rapid Filling of a Single Pipeline: a Numerical and Experimental Analysis. Water, 11(9), 1814. doi:10.3390/w11091814Vasconcelos, J. G., & Wright, S. J. (2008). Rapid Flow Startup in Filled Horizontal Pipelines. Journal of Hydraulic Engineering, 134(7), 984-992. doi:10.1061/(asce)0733-9429(2008)134:7(984)Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Iglesias-Rey, P. L., & Mora-Meliá, D. (2018). Transient phenomena during the emptying process of a single pipe with water–air interaction. Journal of Hydraulic Research, 57(3), 318-326. doi:10.1080/00221686.2018.1492465Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Mora-Meliá, D., & Iglesias-Rey, P. L. (2019). Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review. Urban Water Journal, 16(4), 299-311. doi:10.1080/1573062x.2019.1669188Besharat, M., Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Viseu, M. T., & Ramos, H. M. (2018). Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket. Urban Water Journal, 15(8), 769-779. doi:10.1080/1573062x.2018.1540711Besharat, M., Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Viseu, M. T., & Ramos, H. M. (2019). Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage. Journal of Hydraulic Research, 58(4), 553-565. doi:10.1080/00221686.2019.1625819Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., … van’t Westende, J. M. C. (2012). Emptying of Large-Scale Pipeline by Pressurized Air. Journal of Hydraulic Engineering, 138(12), 1090-1100. doi:10.1061/(asce)hy.1943-7900.0000631Tijsseling, A. S., Hou, Q., Bozkuş, Z., & Laanearu, J. (2015). Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. Journal of Pressure Vessel Technology, 138(3). doi:10.1115/1.4031508Malekpour, A., Karney, B. W., & Nault, J. (2016). Physical Understanding of Sudden Pressurization of Pipe Systems with Entrapped Air: Energy Auditing Approach. Journal of Hydraulic Engineering, 142(2), 04015044. doi:10.1061/(asce)hy.1943-7900.0001067Noto, L., & Tucciarelli, T. (2001). DORA Algorithm for Network Flow Models with Improved Stability and Convergence Properties. Journal of Hydraulic Engineering, 127(5), 380-391. doi:10.1061/(asce)0733-9429(2001)127:5(380)Zhou, L., Liu, D., & Ou, C. (2011). Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model. Engineering Applications of Computational Fluid Mechanics, 5(1), 127-140. doi:10.1080/19942060.2011.11015357SaemI, S., Raisee, M., Cervantes, M. J., & Nourbakhsh, A. (2018). Computation of two- and three-dimensional water hammer flows. Journal of Hydraulic Research, 57(3), 386-404. doi:10.1080/00221686.2018.1459892Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., & Piccinni, A. (2016). Hydraulic Transients Caused by Air Expulsion During Rapid Filling of Undulating Pipelines. Water, 8(1), 25. doi:10.3390/w8010025Wang, L., Wang, F., Karney, B., & Malekpour, A. (2017). Numerical investigation of rapid filling in bypass pipelines. Journal of Hydraulic Research, 55(5), 647-656. doi:10.1080/00221686.2017.1300193Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Besharat, M., & Ramos, H. M. (2018). Subatmospheric pressure in a water draining pipeline with an air pocket. Urban Water Journal, 15(4), 346-352. doi:10.1080/1573062x.2018.1475578Ramezani, L., Karney, B., & Malekpour, A. (2016). Encouraging Effective Air Management in Water Pipelines: A Critical Review. Journal of Water Resources Planning and Management, 142(12), 04016055. doi:10.1061/(asce)wr.1943-5452.0000695Martins, S. C., Ramos, H. M., & Almeida, A. B. (2015). Conceptual analogy for modelling entrapped air action in hydraulic systems. Journal of Hydraulic Research, 53(5), 678-686. doi:10.1080/00221686.2015.1077353Zhou, F., Hicks, F. E., & Steffler, P. M. (2002). Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air. Journal of Hydraulic Engineering, 128(6), 625-634. doi:10.1061/(asce)0733-9429(2002)128:6(625)Cabrera, E., Abreu, J., Pérez, R., & Vela, A. (1992). Influence of Liquid Length Variation in Hydraulic Transients. Journal of Hydraulic Engineering, 118(12), 1639-1650. doi:10.1061/(asce)0733-9429(1992)118:12(1639

    Transient Phenomena Generated in Emptying Operations in Large-Scale Hydraulic Pipelines

    Get PDF
    [EN] Air pockets generated during emptying operations in pressurized hydraulic systems cause significant pressure drops inside pipes. To avoid these sudden pressure changes, one of the most widely used methods involves the installation of air valves along the pipeline route. These elements allow air exchange between the exterior and the interior of the pipe, which alleviates the pressure drops produced and thus prevents possible breaks or failures in the structure of the installation. This study uses a mathematical model previously validated by the authors in smaller installations to simulate all hydraulic variables involved in emptying processes over time. The purpose of these simulations is the validation of the mathematical model in real large-scale installations, and to do this, the results obtained with the mathematical model are compared with actual measurements made by the partner company. The hydraulic system selected for the study is a pipeline with a nominal diameter of 400 mm and a total length of 1020 m. The results obtained from the mathematical model show great similarity with the experimental measurements, thus validating the model for emptying large pipes.Romero, G.; Fuertes-Miquel, VS.; Coronado-Hernández, ÓE.; Ponz-Carcelén, R.; Biel Sanchis, F. (2020). Transient Phenomena Generated in Emptying Operations in Large-Scale Hydraulic Pipelines. Water. 12(8):1-11. https://doi.org/10.3390/w12082313S111128Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., … van’t Westende, J. M. C. (2012). Emptying of Large-Scale Pipeline by Pressurized Air. Journal of Hydraulic Engineering, 138(12), 1090-1100. doi:10.1061/(asce)hy.1943-7900.0000631Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Mora-Meliá, D., & Iglesias-Rey, P. L. (2019). Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review. Urban Water Journal, 16(4), 299-311. doi:10.1080/1573062x.2019.1669188Vasconcelos, J. G., & Wright, S. J. (2008). Rapid Flow Startup in Filled Horizontal Pipelines. Journal of Hydraulic Engineering, 134(7), 984-992. doi:10.1061/(asce)0733-9429(2008)134:7(984)Bashiri-Atrabi, H., & Hosoda, T. (2015). The motion of entrapped air cavities in inclined ducts. Journal of Hydraulic Research, 53(6), 814-819. doi:10.1080/00221686.2015.1060272Zhou, L., Liu, D., Karney, B., & Wang, P. (2013). Phenomenon of White Mist in Pipelines Rapidly Filling with Water with Entrapped Air Pockets. Journal of Hydraulic Engineering, 139(10), 1041-1051. doi:10.1061/(asce)hy.1943-7900.0000765Ramezani, L., Karney, B., & Malekpour, A. (2015). The Challenge of Air Valves: A Selective Critical Literature Review. Journal of Water Resources Planning and Management, 141(10), 04015017. doi:10.1061/(asce)wr.1943-5452.0000530Ramezani, L., Karney, B., & Malekpour, A. (2016). Encouraging Effective Air Management in Water Pipelines: A Critical Review. Journal of Water Resources Planning and Management, 142(12), 04016055. doi:10.1061/(asce)wr.1943-5452.0000695Coronado-Hernández, O., Fuertes-Miquel, V., Besharat, M., & Ramos, H. (2017). Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves. Water, 9(2), 98. doi:10.3390/w9020098Liou, C. P., & Hunt, W. A. (1996). Filling of Pipelines with Undulating Elevation Profiles. Journal of Hydraulic Engineering, 122(10), 534-539. doi:10.1061/(asce)0733-9429(1996)122:10(534)Zhou, L., & Liu, D. (2013). Experimental investigation of entrapped air pocket in a partially full water pipe. Journal of Hydraulic Research, 51(4), 469-474. doi:10.1080/00221686.2013.785985Fuertes-Miquel, V. S., López-Jiménez, P. A., Martínez-Solano, F. J., & López-Patiño, G. (2016). Numerical modelling of pipelines with air pockets and air valves. Canadian Journal of Civil Engineering, 43(12), 1052-1061. doi:10.1139/cjce-2016-0209Martins, S. C., Ramos, H. M., & Almeida, A. B. (2015). Conceptual analogy for modelling entrapped air action in hydraulic systems. Journal of Hydraulic Research, 53(5), 678-686. doi:10.1080/00221686.2015.1077353Balacco, G., Apollonio, C., & Piccinni, A. F. (2015). Experimental analysis of air valve behaviour during hydraulic transients. Journal of Applied Water Engineering and Research, 3(1), 3-11. doi:10.1080/23249676.2015.1032374Abreu, J., Cabrera, E., Izquierdo, J., & García-Serra, J. (1999). Flow Modeling in Pressurized Systems Revisited. Journal of Hydraulic Engineering, 125(11), 1154-1169. doi:10.1061/(asce)0733-9429(1999)125:11(1154)De Marchis, M., Freni, G., & Milici, B. (2018). Experimental analysis of pressure-discharge relationship in a private water supply tank. Journal of Hydroinformatics, 20(3), 608-621. doi:10.2166/hydro.2018.135Alexander, J., Lee, P. J., Davidson, M., Duan, H.-F., Li, Z., Murch, R., … Brunone, B. (2019). Experimental Validation of Existing Numerical Models for the Interaction of Fluid Transients With In-Line Air Pockets. Journal of Fluids Engineering, 141(12). doi:10.1115/1.4043776Besharat, M., Tarinejad, R., Aalami, M. T., & Ramos, H. M. (2016). Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis. Water Resources Management, 30(8), 2687-2702. doi:10.1007/s11269-016-1310-1Covas, D., Stoianov, I., Ramos, H., Graham, N., Maksimović, Č., & Butler, D. (2004). Water hammer in pressurized polyethylene pipes: conceptual model and experimental analysis. Urban Water Journal, 1(2), 177-197. doi:10.1080/1573062041233128997

    Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations

    Full text link
    [EN] During the filling process in pressurized hydraulic systems, sudden pressure changes generated inside the pipes can cause significant damage. To avoid these excessive overpressures, air valves should be installed to allow air exchange between the inside and outside during the filling process. This study presents a mathematical model to analyse the hydraulic transients during filling processes. This model, which has already been validated in small laboratories, is now applied to real large-scale systems that consist of DN400 and DN600 pipelines from Empresa Mixta Metropolitana S.A (EMIMET - Group Global Omnium), which is the company that manages the water supply of the metropolitan area of Valencia (from the Drinking Water Treatment Station to the municipalities). The mathematical model for large pipes is validated by comparing the experimental measurements and the results of model.Romero, G.; Fuertes-Miquel, VS.; Coronado-Hernández, ÓE.; Ponz-Carcelén, R.; Biel-Sanchis, F. (2020). Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations. Urban Water Journal. 17(6):568-575. https://doi.org/10.1080/1573062X.2020.1800762S568575176Abreu, J., Cabrera, E., Izquierdo, J., & García-Serra, J. (1999). Flow Modeling in Pressurized Systems Revisited. Journal of Hydraulic Engineering, 125(11), 1154-1169. doi:10.1061/(asce)0733-9429(1999)125:11(1154)Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., & Piccinni, A. (2016). Hydraulic Transients Caused by Air Expulsion During Rapid Filling of Undulating Pipelines. Water, 8(1), 25. doi:10.3390/w8010025Balacco, G., Apollonio, C., & Piccinni, A. F. (2015). Experimental analysis of air valve behaviour during hydraulic transients. Journal of Applied Water Engineering and Research, 3(1), 3-11. doi:10.1080/23249676.2015.1032374Besharat, M., Tarinejad, R., Aalami, M. T., & Ramos, H. M. (2016). Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis. Water Resources Management, 30(8), 2687-2702. doi:10.1007/s11269-016-1310-1Chaudhry, M. H. (2014). Applied Hydraulic Transients. doi:10.1007/978-1-4614-8538-4Coronado-Hernández, Ó. E., Besharat, M., Fuertes-Miquel, V. S., & Ramos, H. M. (2019). Effect of a Commercial Air Valve on the Rapid Filling of a Single Pipeline: a Numerical and Experimental Analysis. Water, 11(9), 1814. doi:10.3390/w11091814Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Besharat, M., & Ramos, H. M. (2018). Subatmospheric pressure in a water draining pipeline with an air pocket. Urban Water Journal, 15(4), 346-352. doi:10.1080/1573062x.2018.1475578Fuertes-Miquel, V. S. 2001. “Hydraulic Transients with Entrapped Air Pockets.” PhD diss., Department of Hydraulic Engineering, Polytechnic University of Valencia, Spain.Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Iglesias-Rey, P. L., & Mora-Meliá, D. (2018). Transient phenomena during the emptying process of a single pipe with water–air interaction. Journal of Hydraulic Research, 57(3), 318-326. doi:10.1080/00221686.2018.1492465Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Mora-Meliá, D., & Iglesias-Rey, P. L. (2019). Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review. Urban Water Journal, 16(4), 299-311. doi:10.1080/1573062x.2019.1669188García-Todolí, S., Iglesias-Rey, P., Mora-Meliá, D., Martínez-Solano, F., & Fuertes-Miquel, V. (2018). Computational Determination of Air Valves Capacity Using CFD Techniques. Water, 10(10), 1433. doi:10.3390/w10101433Hou, Q., Tijsseling, A. S., Laanearu, J., Annus, I., Koppel, T., Bergant, A., … van ’t Westende, J. M. C. (2014). Experimental Investigation on Rapid Filling of a Large-Scale Pipeline. Journal of Hydraulic Engineering, 140(11), 04014053. doi:10.1061/(asce)hy.1943-7900.0000914Izquierdo, J., Fuertes, V. S., Cabrera, E., Iglesias, P. L., & Garcia-Serra, J. (1999). Pipeline start-up with entrapped air. Journal of Hydraulic Research, 37(5), 579-590. doi:10.1080/00221689909498518Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., … van’t Westende, J. M. C. (2012). Emptying of Large-Scale Pipeline by Pressurized Air. Journal of Hydraulic Engineering, 138(12), 1090-1100. doi:10.1061/(asce)hy.1943-7900.0000631Leon, A. S., Ghidaoui, M. S., Schmidt, A. R., & Garcia, M. H. (2010). A robust two-equation model for transient-mixed flows. Journal of Hydraulic Research, 48(1), 44-56. doi:10.1080/00221680903565911Liou, C. P., & Hunt, W. A. (1996). Filling of Pipelines with Undulating Elevation Profiles. Journal of Hydraulic Engineering, 122(10), 534-539. doi:10.1061/(asce)0733-9429(1996)122:10(534)Malekpour, A. (2019). Complex interactions of water, air and its controlled removal during pipeline filling operations. Fluid Mechanics research International Journal, 3(1), 4-15. doi:10.15406/fmrij.2019.03.00046Malekpour, A., Karney, B. W., & Nault, J. (2016). Physical Understanding of Sudden Pressurization of Pipe Systems with Entrapped Air: Energy Auditing Approach. Journal of Hydraulic Engineering, 142(2), 04015044. doi:10.1061/(asce)hy.1943-7900.0001067Martins, N. M. C., Delgado, J. N., Ramos, H. M., & Covas, D. I. C. (2017). Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model. Journal of Hydraulic Research, 55(4), 506-519. doi:10.1080/00221686.2016.1275046Martins, S. C., Ramos, H. M., & Almeida, A. B. (2015). Conceptual analogy for modelling entrapped air action in hydraulic systems. Journal of Hydraulic Research, 53(5), 678-686. doi:10.1080/00221686.2015.1077353Ramezani, L., Karney, B., & Malekpour, A. (2015). The Challenge of Air Valves: A Selective Critical Literature Review. Journal of Water Resources Planning and Management, 141(10), 04015017. doi:10.1061/(asce)wr.1943-5452.0000530Ramezani, L., Karney, B., & Malekpour, A. (2016). Encouraging Effective Air Management in Water Pipelines: A Critical Review. Journal of Water Resources Planning and Management, 142(12), 04016055. doi:10.1061/(asce)wr.1943-5452.0000695SaemI, S., Raisee, M., Cervantes, M. J., & Nourbakhsh, A. (2018). Computation of two- and three-dimensional water hammer flows. Journal of Hydraulic Research, 57(3), 386-404. doi:10.1080/00221686.2018.1459892Tijsseling, A. S., Hou, Q., Bozkuş, Z., & Laanearu, J. (2015). Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. Journal of Pressure Vessel Technology, 138(3). doi:10.1115/1.4031508Tran, P. D. (2017). Pressure Transients Caused by Air-Valve Closure while Filling Pipelines. Journal of Hydraulic Engineering, 143(2), 04016082. doi:10.1061/(asce)hy.1943-7900.0001245Trindade, B. C., & Vasconcelos, J. G. (2013). Modeling of Water Pipeline Filling Events Accounting for Air Phase Interactions. Journal of Hydraulic Engineering, 139(9), 921-934. doi:10.1061/(asce)hy.1943-7900.0000757Vasconcelos, J. G., & Wright, S. J. (2008). Rapid Flow Startup in Filled Horizontal Pipelines. Journal of Hydraulic Engineering, 134(7), 984-992. doi:10.1061/(asce)0733-9429(2008)134:7(984)Wang, L., Wang, F., Karney, B., & Malekpour, A. (2017). Numerical investigation of rapid filling in bypass pipelines. Journal of Hydraulic Research, 55(5), 647-656. doi:10.1080/00221686.2017.1300193Zhou, F., Hicks, F. E., & Steffler, P. M. (2002). Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air. Journal of Hydraulic Engineering, 128(6), 625-634. doi:10.1061/(asce)0733-9429(2002)128:6(625)Zhou, L., & Liu, D. (2013). Experimental investigation of entrapped air pocket in a partially full water pipe. Journal of Hydraulic Research, 51(4), 469-474. doi:10.1080/00221686.2013.785985Zhou, L., Liu, D., Karney, B., & Wang, P. (2013). Phenomenon of White Mist in Pipelines Rapidly Filling with Water with Entrapped Air Pockets. Journal of Hydraulic Engineering, 139(10), 1041-1051. doi:10.1061/(asce)hy.1943-7900.0000765Zhou, L., Liu, D., Karney, B., & Zhang, Q. (2011). Influence of Entrapped Air Pockets on Hydraulic Transients in Water Pipelines. Journal of Hydraulic Engineering, 137(12), 1686-1692. doi:10.1061/(asce)hy.1943-7900.0000460Zhou, L., Liu, D., & Ou, C. (2011). Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model. Engineering Applications of Computational Fluid Mechanics, 5(1), 127-140. doi:10.1080/19942060.2011.1101535

    Application of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Filling

    Get PDF
    The estimation of thermodynamic behavior during filling processes with entrapped air in water pipelines is a complex task as it requires solving a system of algebraic-differential equations. A lot of different numerical methods have been used for this purpose in literature including the rigid water column (RWC) model. The main advantage of the RWC model is its acceptable accuracy with very low computational load. In that context, this research presents the computation of critical points of the physical equations that describe the phenomenon. These points provide information about the final position of the air–water interface. The Newton–Raphson method was then applied to obtain a unique equation that can be used by engineers to directly compute variables such as air pocket pressure and water column length at the end of the hydraulic event. A case study was analyzed to compare the results of the mathematical model with the obtained equation for computing critical points. Both methods provided the same values for the water column length at the end of the hydraulic event. A sensitivity analysis was conducted to identify dependent and non-dependent parameters for evaluating the critical points. The proposed formulation was validated through an experimental set of data. © 2023 by the authors

    Modelos matemáticos para el análisis de los procesos de llenado y vaciado en los sistemas hidráulicos a presión

    Get PDF
    Durante los procesos de llenado y vaciado en los sistemas hidráulicos a presión pueden generarse importantes sobrepresiones o depresiones, independientemente de la presencia o no de ventosas. Por ello, el conocimiento físico del problema planteado y la posibilidad de evaluar los picos de presión que potencialmente pueden generarse presenta un indudable interés práctico. Para lograr estos objetivos, es fundamental disponer de herramientas adecuadas y modelos matemáticos fiables y contrastados que permitan la simulación de los transitorios hidráulicos con aire atrapado de la forma más realista posible. En este trabajo se analizan diversos modelos matemáticos para el análisis de los procesos de llenado y vaciado en los sistemas hidráulicos a presión: (i) modelos matemáticos 1D; (ii) modelos simplificados: modelos cuasi-estáticos; (iii) modelos complejos: modelos 2D/3D con técnicas CFD

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Selection of Hydrological Probability Distributions for Extreme Rainfall Events in the Regions of Colombia

    Full text link
    Frequency analysis of extreme events is used to estimate the maximum rainfall associated with different return periods and is used in planning hydraulic structures. When carrying out this type of analysis in engineering projects, the hydrological distributions that best fit the trend of maximum 24 h rainfall data are unknown. This study collected maximum 24 h rainfall records from 362 stations distributed throughout Colombia, with the goal of guiding hydraulic planners by suggesting the probability distributions they should use before beginning their analysis. The generalized extreme value (GEV) probability distribution, using the weighted moments method, presented the best fits of frequency analysis of maximum daily precipitation for various return periods for selected rainfall stations in Colombia

    IoT, Machine Learning and Photogrammetry in Small Hydropower Towards Energy and Digital Transition: Potential Energy and Viability Analyses

    Full text link
    [EN] This research aims to evaluate and put into practise the design of a small hydropower plant on a stream at São Vicente, in Madeira Island, supported by internet of things (IoT). The photogrammetry technique is also used with a comprehensive digital transformation, in which new concepts, methods and models, such as machine learning (ML), and big data analytics play an important role due to the huge availability time series that have to be exploited in hydropower design studies. Nowadays, digitalization and massive data availability are imposing new ways to address many of the current challenges associated with the energy and digital transition. This research is based on a simple small hydropower design, to present an integrated methodology using new methods assigned by an internet protocol system, which includes the development of different steps and components supported by GIS, photogrammetry and the use of advanced tools, with the support of a drone survey with internet communication (IoT) that allow the generation of experimentally-based estimates in situ characterization, the volumetric flow, the hydrological data treatment, the hydraulic calculations and economic estimations for a real hydro project. Therefore, hydrological variables, hydraulic analysis and topographical survey are carried out in the IoT application platform supported by new tools and methods to optimise the size of hydraulic structures, estimate the performance and potential of the hydropower plant towards the best solution for energy and digital transition. Firstly, the data-base for the all study and posterior sizing of the case study of hydropower plant are defined and then the corresponding analyses and results are presented. Then, the cost estimation for the construction, maintenance and operation of the selected elements that compose the hydropower topology are determined, as well as the respective economic balance, considering the annual energy production. In addition, both economic and environmental return on investment is discussed. Finally, an analysis to equate the cost estimates and the respective benefits of hydropower generation using this new approach applicability is stablished, taking into account some economic indicators to determine the profitability of the project.The authors would like to thank to RAM in the data acquisition support and also to João Pedro Barreto in the survey, data achievement and analyses developed during his MSc thesis, under the supervision of Prof. Helena M. Ramos, which the study was the basis for the development of this research.Ramos, HM.; Coronado-Hernández, ÓE. (2023). IoT, Machine Learning and Photogrammetry in Small Hydropower Towards Energy and Digital Transition: Potential Energy and Viability Analyses. Journal of Applied Research in Technology & Engineering. 4(2):69-86. https://doi.org/10.4995/jarte.2023.1951069864
    corecore