3,210 research outputs found

    Formation of Two Glass Phases in Binary Cu-Ag Liquid

    Get PDF
    The glass transition is alternatively described as either a dynamic transition in which there is a dramatic slowing down of the kinetics, or as a thermodynamic phase transition. To examine the physical origin of the glass transition in fragile Cu-Ag liquids, we employed molecular dynamics (MD) simulations on systems in the range of 32,000 to 2,048,000 atoms. Surprisingly, we identified a 1st order freezing transition from liquid (L) to metastable heterogenous solid-like phase, denoted as the G-glass, when a supercooled liquid evolves isothermally below its melting temperature at deep undercooling. In contrast, a more homogenous liquid-like glass, denoted as the L-glass, is achieved when the liquid is quenched continuously to room temperature with a fast cooling rate of ∼10¹¹ K/sec. We report a thermodynamic description of the L-G transition and characterize the correlation length of the heterogenous structure in the G-glass. The shear modulus of the G-glass is significantly higher than the L-glass, suggesting that the first order L-G transition is linked fundamentally to long-range elasticity involving elementary configurational excitations in the G-glass

    Endocrinologic Control of Men's Sexual Desire and Arousal/Erection

    Get PDF
    Several hormones and neurotransmitters orchestrate men's sexual response, including the appetitive (sexual desire) and consummative (arousal and penile erection) phases. AIM: To provide an overview and recommendations regarding endocrinologic control of sexual desire and arousal and erection and their disturbances. METHODS: Medical literature was reviewed by the subcommittee of the International Consultation of Sexual Medicine, followed by extensive internal discussion, and then public presentation and discussion with other experts. The role of pituitary (prolactin, oxytocin, growth hormone, and α-melanocyte-stimulating hormone), thyroid, and testicular hormones was scrutinized and discussed. MAIN OUTCOME MEASURES: Recommendations were based on grading of evidence-based medical literature, followed by interactive discussion. RESULTS: Testosterone has a primary role in controlling and synchronizing male sexual desire and arousal, acting at multiple levels. Accordingly, meta-analysis indicates that testosterone therapy for hypogonadal individuals can improve low desire and erectile dysfunction. Hyperprolactinemia is associated with low desire that can be successfully corrected by appropriate treatments. Oxytocin and α-melanocyte-stimulating hormone are important in eliciting sexual arousal; however, use of these peptides, or their analogs, for stimulating sexual arousal is still under investigation. Evaluation and treatment of other endocrine disorders are suggested only in selected cases. CONCLUSION: Endocrine abnormalities are common in patients with sexual dysfunction. Their identification and treatment is strongly encouraged in disturbances of sexual desire and arousal

    Use of potassium polyaspartate for the tartaric stabilization of Sicilian white wines

    Get PDF
    Cold stabilization is a common method used to avoid tartaric acid crystals from forming in bottled wine, but this technique shows some inconveniences on the sensory characteristics and energy cost. In the present research, the tartaric stabilization in Sicilian white wines, with a recently permissible molecule in oenology, was studied: the potassium polyaspartate (PAK). The PAK has a negative charge at wine pH and allows to sequester the K+ cations; consequently it inhibits the formation and the growth of potassium bitartrate crystals. PAK is a relatively small polymer; perfectly microfiltrated and does not allow the filling phenomena in filtration membranes. The adding of PAK allowed to reduce almost all the tartaric precipitations on very unstable wines, regardless of the chemical-physical characteristics of the treated white wines. The stability of PAK, after thermal stress of the wine added to this polymer, was confirmed evaluating different analytical parameters such as pH, total acidity and buffer power, while variations in the conductivity of wines seemed to indicate a residual tartaric instability. In conclusion, the use of PAK makes possible to improve the sensory characteristics of wines, considering lower losses of tartaric acid and potassium, which are important for acid perception and acid persistence (buffer power), as well as reducing production costs and low environmental impact

    Drying kinetics and physico-chemical quality of mango slices

    Get PDF
    Mango (Mangifera indica L.) is an important tropical fruit consumed worldwide and grown in Italy only in Sicily, where the areas of the Tyrrhenian coast have proved to be suitable to produce valuable fruits. Mango fruit has a pleasant aroma and taste, which are important qualities for consumer’s sensorial acceptance. However, they are highly perishable, prone to progressive undesired changes if stored untreated, resulting in around 25% postharvest losses, which is further increased during storage and transportation. An alternative for reducing the above-mentioned undesired changes is the dehydration of the cut fruit, which reduce the fruit water activity, thereby avoiding the deteriorative process and extending the shelf-life. This study investigates the effect of dehydration at different temperatures (50, 60 and 70°C) on drying kinetics and volatile compounds of two cultivars (Keitt and Osteen) of mango fruits cultivated in Sicily. Significant losses of volatile constituents of fresh mango occurred at higher temperature, especially for the Osteen cultivar. A diffusion model including the effect of shrinkage is also proposed, which may be used to describe drying behaviour of fruits and to define the optimal drying conditions.. Experimental data of the moisture ratio during drying were well predicted by the model

    Wave Induced Stresses Measured at the Wave Dragon Nissum Bredning Prototype

    Get PDF

    Yield anisotropy effects on buckling of circular tubes under bending

    Get PDF
    AbstractRelatively thin-walled tubes bent into the plastic range buckle by axial wrinkling. The wrinkles initially grow stably but eventually localize and cause catastrophic failure in the form of sharp local kinking. The onset of axial wrinkling was previously established by bifurcation analyses that use instantaneous deformation theory moduli. The curvatures at bifurcation were predicted accurately, but the wrinkle wavelengths were consistently longer than measured values. The subject is revisited with the aim of resolving this discrepancy. A set of new bending experiments is conducted on aluminum alloy tubes. The results are shown to be in line with previous ones. However, the tubes used were found to exhibit plastic anisotropy, which was measured and characterized through Hill’s quadratic anisotropic yield function. The anisotropy was incorporated in the flow theory used for prebuckling and postbuckling calculations as well as in the deformation theory used for bifurcation checks. With the anisotropy accounted for, calculated tube responses are found to be in excellent agreement with the measured ones while the predicted bifurcation curvatures and wrinkle wavelengths fall in line with the measurements also. The postbuckling response is established using a finite element model of a tube assigned an initial axisymmetric imperfection with the calculated wavelength. The response develops a limit moment that is followed by a sharp kink that grows while the overall moment drops. The curvature at the limit moment agrees well with the experimental onset of failure. From parametric studies of the various instabilities it is concluded that, for optimum predictions, anisotropy must be incorporated in both bifurcation buckling as well as in postbuckling calculations

    Evaluating the potential of marginal lands available for sustainable cellulosic biofuel production in Italy

    Get PDF
    The European Union aims to provide as much as one quarter of its transportation fuels via biofuels derived from renewable sources by 2030. To put this into perspective, the Italian government has recently established an ambitious goal to support the wider uptake of advanced second-generation biofuels, including cellulosic biofuels for the transportation sector. A sustainable way forward is to grow perennial biomass crops on marginal lands, however the nationwide availability of those lands for lignocellulosic feedstock production remains uncertain. We identify and evaluate the potential of marginal lands in Italy to produce sizeable amounts of biomass for sustainable cellulosic biofuel production while limiting land use conflicts and negative ecological impacts. We applied spatial multi-criteria decision analysis techniques in geographic information systems to ultimately generate spatially-explicit national land suitability and availability maps at a fine resolution (250-m). We selected a broad range of leading cellulosic biomass crops that includes poplar (Populus × canadensis Moench), willow (Salix alba Linnaeus), black locust (Robinia pseudoacacia Linnaeus), giant reed (Arundo donax Linnaeus), and vetiver grass (Chrysopogon zizanioides Linnaeus). Based on marginality criteria, our results suggest that such biomass plantations of perennial grasses and short rotation trees may produce 3.1–27.4 billion liters of cellulosic ethanol per year from 462,265 to 2,811,064 million hectares of available marginal lands. This estimated production may fulfill 7.8–69.1% of Italy's current liquid transportation fuel consumption, constrained by the requirement that each modelled location be within 70 km of a potential cellulosic biorefinery. Collectively, this study provides the cornerstone of efforts to rationally meet Italy's need for renewable fuels in a sustainable low-carbon economy future
    • …
    corecore