11 research outputs found

    Formation of Two Glass Phases in Binary Cu-Ag Liquid

    Get PDF
    The glass transition is alternatively described as either a dynamic transition in which there is a dramatic slowing down of the kinetics, or as a thermodynamic phase transition. To examine the physical origin of the glass transition in fragile Cu-Ag liquids, we employed molecular dynamics (MD) simulations on systems in the range of 32,000 to 2,048,000 atoms. Surprisingly, we identified a 1st order freezing transition from liquid (L) to metastable heterogenous solid-like phase, denoted as the G-glass, when a supercooled liquid evolves isothermally below its melting temperature at deep undercooling. In contrast, a more homogenous liquid-like glass, denoted as the L-glass, is achieved when the liquid is quenched continuously to room temperature with a fast cooling rate of ∼10¹¹ K/sec. We report a thermodynamic description of the L-G transition and characterize the correlation length of the heterogenous structure in the G-glass. The shear modulus of the G-glass is significantly higher than the L-glass, suggesting that the first order L-G transition is linked fundamentally to long-range elasticity involving elementary configurational excitations in the G-glass

    Observation of an apparent first-order glass transition in ultrafragile Pt–Cu–P bulk metallic glasses

    Get PDF
    An experimental study of the configurational thermodynamics for a series of near-eutectic Pt_(80-x)Cu_xPâ‚‚â‚€ bulk metallic glass-forming alloys is reported where 14 < x < 27. The undercooled liquid alloys exhibit very high fragility that increases as x decreases, resulting in an increasingly sharp glass transition. With decreasing x, the extrapolated Kauzmann temperature of the liquid, T_K, becomes indistinguishable from the conventionally defined glass transition temperature, T_g. For x < 17, the observed liquid configurational enthalpy vs. T displays a marked discontinuous drop or latent heat at a well-defined freezing temperature, T_(gm). The entropy drop for this first-order liquid/glass transition is approximately two-thirds of the entropy of fusion of the crystallized eutectic alloy. Below T_(gm), the configurational entropy of the frozen glass continues to fall rapidly, approaching that of the crystallized eutectic solid in the low T limit. The so-called Kauzmann paradox, with negative liquid entropy (vs. the crystalline state), is averted and the liquid configurational entropy appears to comply with the third law of thermodynamics. Despite their ultrafragile character, the liquids at x = 14 and 16 are bulk glass formers, yielding fully glassy rods up to 2- and 3-mm diameter on water quenching in thin-wall silica tubes. The low Cu content alloys are definitive examples of glasses that exhibit first-order melting

    First Order Phase Transition in Liquid Ag to the Heterogeneous G-Phase

    Get PDF
    A molten metal is an atomic liquid that lacks directional bonding and is free from chemical ordering effects. Experimentally, liquid metals can be undercooled by up to ∼20% of their melting temperature but crystallize rapidly in subnanosecond time scales at deeper undercooling. To address this limited metastability with respect to crystallization, we employed molecular dynamics simulations to study the thermodynamics and kinetics of the glass transition and crystallization in deeply undercooled liquid Ag. We present direct evidence that undercooled liquid Ag undergoes a first-order configurational freezing transition from the high-temperature homogeneous disordered liquid phase (L) to a metastable, heterogeneous, configurationally ordered state that displays elastic rigidity with a persistent and finite shear modulus, μ. We designate this ordered state as the G-phase and conclude it is a metastable non-crystalline phase. We show that the L–G transition occurs by nucleation of the G-phase from the L-phase. Both the L- and G-phases are metastable because both ultimately crystallize. The observed first-order transition is reversible: the G-phase displays a first-order melting transition to the L-phase at a coexistence temperature, T_(G,M). We develop a thermodynamic description of the two phases and their coexistence boundary

    Formation of Two Glass Phases in Binary Cu-Ag Liquid

    Get PDF
    The glass transition is alternatively described as either a dynamic transition in which there is a dramatic slowing down of the kinetics, or as a thermodynamic phase transition. To examine the physical origin of the glass transition in fragile Cu-Ag liquids, we employed molecular dynamics (MD) simulations on systems in the range of 32,000 to 2,048,000 atoms. Surprisingly, we identified a 1st order freezing transition from liquid (L) to metastable heterogenous solid-like phase, denoted as the G-glass, when a supercooled liquid evolves isothermally below its melting temperature at deep undercooling. In contrast, a more homogenous liquid-like glass, denoted as the L-glass, is achieved when the liquid is quenched continuously to room temperature with a fast cooling rate of ∼10¹¹ K/sec. We report a thermodynamic description of the L-G transition and characterize the correlation length of the heterogenous structure in the G-glass. The shear modulus of the G-glass is significantly higher than the L-glass, suggesting that the first order L-G transition is linked fundamentally to long-range elasticity involving elementary configurational excitations in the G-glass

    Proton–hydride tautomerism in hydrogen evolution catalysis

    Get PDF
    Efficient generation of hydrogen from renewable resources requires development of catalysts that avoid deep wells and high barriers. Information about the energy landscape for H_2 production can be obtained by chemical characterization of catalytic intermediates, but few have been observed to date. We have isolated and characterized a key intermediate in 2e^– + 2H^+ → H_2 catalysis. This intermediate, obtained by treatment of Cp*Rh(bpy) (Cp*, η^5-pentamethylcyclopentadienyl; bpy, κ^2-2,2′-bipyridyl) with acid, is not a hydride species but rather, bears [η^4-Cp*H] as a ligand. Delivery of a second proton to this species leads to evolution of H_2 and reformation of η^5-Cp* bound to rhodium(III). With suitable choices of acids and bases, the Cp*Rh(bpy) complex catalyzes facile and reversible interconversion of H^+ and H_2

    The first order L-G phase transition in liquid Ag and Ag-Cu alloys is driven by deviatoric strain

    No full text
    An undercooled liquid-phase (L-phase) can undergo a first order configurational phase transition to either a crystal phase (X-phase) or a metastable, configurationally heterogeneous, rigid glassy phase (G-phase). To investigate the underlying mechanism of the L-G transition, we employ molecular dynamics simulations to study G-phase formation in a binary Cu-Ag system. We find that G-phase formation is driven by the reduction of local distortion energy arising from deviatoric strains in the liquid phase and demonstrate its local distribution. Reduction of distortion energy contributes over 80% of the latent heat of the L-G transition, suggesting that condensation of spatially varying random elastic fields in the liquid is primarily responsible for the first order L-G transition. By applying this analysis to crystallization and G-phase formation in elementary Ag, we show that deviatoric strain energy is the dominant driving force for the L-G and L-X transition also in the case of the pure metal

    DFT study of an unusual proton-relay role for Cp* in hydrogen evolution catalysis

    No full text
    Understanding mechanisms of the hydrogen evolution reaction (HER) is crucial to designing efficient catalysts for the prodn. of solar fuels. Cp*Rh(bpy) (Cp* = η^5- pentamethylcyclopentadienyl; bpy = κ^2-2,2'- bipyridyl) generates hydrogen in the presence of acid. However, the nature of the elementary steps leading to H-H formation has not been clear, as chem. characterization of intermediates in the catalytic reaction has been difficult to obtain. Here, we present a joint exptl.- computational study that addresses this challenge. D. functional theory (DFT) calcns. demonstrate that the catalyst first undergoes a 2e- redn. to form a Rh^I complex. Subsequently, in presence of acid, the Rh complex undergoes protonation at the Cp* ligand to form a complex bearing an [η^4-Cp*H] ligand, preserving the RhI center. DFT calcns. show that this complex is 6.8 kcal /mol more stable than the analogous Rh^(III) hydride. Following the formation of this intermediate, a second protonation can be carried out which results in evolution of hydrogen and restoration of η^5-Cp*. To the best of our knowledge, these results are among the first to show Cp* can serve as a proton relay in HER. New DFT results on the full mechanism for this compd. will be presented, and predictions of possible improvements to the catalyst will be discussed in light of the newly characterized intermediate
    corecore